HP 64000
Logic Development
System

Model 64330 Series
High Level

Software Analyzers For
68000/68008/68010

(D v

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment
from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s calibration facility, and to the calibra-
tion facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials and workmanship
for a period of 90 days from date of installation. During the warranty period, HP will, at its option,
either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no charge within HP service
travel areas. Outside HP service travel areas, warranty service will be performed at Buyer's facility
only upon HP's prior agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP and
HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all ship-
ping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will ex-
ecute its programming instructions when properly installed on that instrument. HP does not war-
rant that the operation of the instrument, or software, or firmware will be uninterrupted or error
free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate main-
tenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the product, or improper site preparation or
maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP
SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL
THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard
products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

KPR #: D200040972 Product: See product list on front cover. 02.01
Keywords: 2203

One-line description:
The analyzer does not work with #include statements in ¢ or PASCAL

Problem:

The high level language analyzer does not work with code that contains
#include statements whose files contain executable code. The source
code of an included file is not available for display by the analyzer
software as it is now written. Included files which contain only type

declarations (or statements which are non-executable) pose no problems
for the analyzer.

Solution:

If it is necessary to debug code which uses #include statements of
files which contain executable code, the user (for the purposes of
debugging those executable statements) may merge in the file and
eliminate the include statement while he is debugging that portion of

the code. After debugging that portion of the code, he can replace the
code with the original include statement.

[ﬁ] HEWLETT
I” PACKARD
5958-8832, Dec. 1987

Printed in U.S.A.
E1287

(ﬁp HEWLETT

PACKARD

OPERATING MANUAL

MODEL 64330 SERIES
HIGH LEVEL
SOFTWARE ANALYZERS
FOR 68000/68008/68010

© COPYRIGHT HEWLETT-PACKARD COMPANY 1985
LOGIC SYSTEMS DIVISION
COLORADO SPRINGS, COLORADO, U. S. A.

ALL RIGHTS RESERVED

Manual Part No. 64331-90903 PRINTED: September 1985
E0985

PRINTING HISTORY

Each new edition of this manual incorporates all material updated since the previous edition.
Manual change sheets are issued between editions, allowing you to correct or insert information in

the current edition.

The print date changes only when each new edition is published. Minor corrections or additions
may be made as the manual is reprinted between editions. Vertical bars in a page margin indi-
cates the location of reprint corrections.

First Printing September, 1984 (P.N. 64331-90902)
Second Edition September, 1985 (P.N. 64331-90903)

SOFTWARE VERSION NUMBER

Your HP 64000 software is identified with a version number in the form YY.XX. The version num-
ber is printed on a label attached to the software media or media envelope. This manual applies to

the following:

Model HP 64331A Version 2.XX
Model HP 64331B Version 1.XX
Model HP 64334A Version 2.XX
Model HP 64334B Version 1.XX
Model HP 64337A Version 1.XX

Within the software version number, the digit to the left of the decimal point indicates the product
feature set. This manual supports all software versions identified with this same digit.

The digits to the right of the decimal point indicate feature subsets. These feature subsets normali-
ly have no affect on the manual. However, if you subscribe to the "Software Material Subscription”
(SMS), these subset items are covered in the "Software Response Bulletin" (SRB).

SOFTWARE MATERIALS SUBSCRIPTION

Hewlett-Packard offers a Software Materials Subscription (SMS) to provide you with the most time-
ly and comprehensive information concerning your HP 64000 Logic Development System. This
service can maximize the productivity of your HP system by ensuring that you have the latest
product enhancements, software revisions, and software reference manuals. For a more detailed
description of the SMS, refer to chapter 1.

DUPLICATING SOFTWARE

Before using the flexible disc(s) provided with this product, make a work copy. Retain the original
disc(s) as the master copy and use the work copy for daily use. The procedure for duplicating the
master flexible disc(s) is included in chapter 2 of this manual.

Specific rights to use one copy of the software product(s) are granted for use on a single, stand-
alone development station or a cluster of development stations which boot from a single mass
storage device.

Should your master copy become lost or damaged, replacement discs are available through your
Hewlett-Packard sales and service office,

TABLE OF CONTENTS

Chapter 1. GENERAL INFORMATION

INTRODUCTION .. i s e e et e ettt e e e e e e e e et e e e e e e e e i 1-1
MANUAL AP P LICABILITY .. e e e e e e e e e e e e e et e e e 1-1
USING SOFTWARE ANALYSIS TO INCREASE SOFTWARE
ENGINEERING PRODUCTIVITY Lttt ittt e et et et ettt e e 1-2
PREVIEWING MEASUREMENT CAPABILITIESttt iie 1-2
Trace MeasuremeN s i i e e e e e e e e e 1-2
TRACE DATA FLOW ..o et e e e e e 1-3
TRACE MODULES i i e i e st e et e et e e et e eiie e 1-4
TRACE STATEMENTS . .. i i i e e et e et e et e s et e ae e 1-5
TRACE VARIABLES e e e et e e e e e i e 1-6
Interactive Capabilities i e e 1-7
BREAKPOINT S . . e e e e e e e e e e e e e e e 1-7
DISPLAY/MODIFY VARIABLES. e 1-7
Emulation Control e e e e e 1-7
BREAK . e e e e e e e e e e e 1-7
LOAD . .o 1-7
RESET . ottt e e e e e e e e e e 1-7
RUN e e e e e e e e e e 1-7
SOFTWARE MATERIALS SUBSCRIPTION i e e e it s e e 1-8
Software Updates i e e 1-8
Reference Manual Updates. i e 1-8
Software Problem Reporting. i e 1-8
Software Release Bulletins i et 1-8
Software Status Bulletins i e e 1-8
General User Information i i e e 1-9

Chapter 2. INSTALLING THE SOFTWARE ANALYZER

INTRODUCTION . .. et e e ettt 2-1
INSTALLATION .. e ettt et 21
MAKING DUPLICATE COPIES OF FLOPPY DISC SOFTWARE 2-1

Chapter 3. GETTING STARTED

INTRODUGCTION ottt i it et it sttt it e nae e 3-1
MAJOR SOFTKEY LEVELS et 3-1
PREPARING THE SYSTEM FOR MEASUREMENTS oo, 3-2
Initial TUrN ON L e 3-3
Building Database Files i i e s 3-3
GENERATING COMP_DB FILES AT COMPILE AND LINKTIME 3-3
GENERATING COMP_DB FILES USING THE GENERATE_DATABASE UTILITY. .. 3-4
Files Required By The Generate Database Utility 3-5
Executing the Generate_Database Command 3-5
Defining the Software Breakpoint Vector
(HP 64243,64244,64245 Emulators Only) i 3-5
Loading And Executing A Program In Emulation 3-8

High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont'd)

Selecting The Emulation Analysis Mode

(HP 64243,64244,64245 Emulatorsonly) i 3-8
Accessing The Software Analyzer 3-8
PERFORMING A BASIC TRACE MODULES MEASUREMENT 3-10
Loading And RUNNING A Programttt it it e 3-10
Defining A Default Path (Optional) 3-12
Specifying The Acquisition Depth (Optional) 3-13
Setting Up The Trace Specification i, 3-13
Interpreting The Trace Listing i i 3-14
SAVING THE CONFIGURATION e e et e e e e e e 3-14
RECOMMENDED PROGRAMMING STYLE e i i 3-16

Chapter 4. BUILDING DATABASE FILES

INTRODUCTION . . e e e e e e e 4-1
SYMBOLIC INTERFACEo et 4-1
COMP DB FILES ... e e et 4-1
BUILDING THE DATABASE FILE e e 4-2
Compiling Files 4-3
COMPILER SYMBOL FILE.ttt e e 4-3
ASSEMBLER SYMBOL FILEo e it e e e 4-3
Linking Files e 4-3
Using The Generate Database (gen_db) Command. 4-4
REQUIRED FILES. et e e e 4-4
GENERATE_DATABASE COMMAND SYNTAX it 4-5
GENERATE_DATABASE COMMAND PARAMETERS. 4-5
GENERATE_DATABASE COMMAND EXAMPLES, 4-5
VERIFYING DATABASE FILES e e 4-6
USING COMPILER DIRECTIVES e 4-7
AMNESIA e e e e 4-7
ASMB SYM .ottt 4-7
FIXED_PARAMETERS (C Only)t e e e e 4-7
LINE_NUMBERS e e e e e 4-7
OPTIMIZE .o 4-7
FILES WRITTEN IN ASSEMBLY LANGUAGE i 4-8

Chapter 5. CONTROLLING THE EMULATOR

INTRODUCTION .. e e ettt e e et 5-1
EMULATION INTERFACE et e e e e e 5-1
Emulation Configuration File 5-1
Loading And Running The Programttt 5-1
Selecting The Emulation Analysis Mode
(HP 64243,64244,64245 Emulators only) i 5-2
COMMUNICATION BETWEEN THE SOFTWARE ANALYZER AND EMULATION 5-2
USING THE EMULATION MONITOR e e e e 5-3
EMULATION COMMANDS . .. e e e e e e e e 5-3
Break Command e 5-4
Load COMMENG v v v vt i s s e o-5

High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont’'d)

Reset Command i e e e 5-7
RUN ComMmMand ...ttt it i e e e e e 5-8

Chapter 6. MAKING TRACE MEASUREMENTS

INTRODUCTION . . e e e e et e e et e s et e e e 6-1
GENER AL . .o e e 6-1
THE TRACE FILE . . .o e e e e e e e e e e 6-1
MAKING SEQUENTIAL TRACE MEASUREMENTS 6-2
MEASUREMENT CONSIDERATIONS e e 6-2
MEASUREMENT SYSTEM INTERFACE e 6-3
SIMULATED 1/ .ottt e e e et e et e e e e e 6-3
TRACE DATA FLOW MEASUREMENT e 6-3
Command SYNtaX e e e e 6-4
Parameters e 6-5
EXampIes . . e e e 6-6
TRACE MODULES MEASUREMENT e e e 6-8
Command Syntax ... e e e 6-8
Parameters e e e 6-8
EXamPIes . . e 6-9
TRACE STATEMENTS MEASUREMENT e e 6-11
Command Syntax e e 6-11
Parameters e e 6-12
EXAMIDIES . o .t e e 6-12
TRACE VARIABLES MEASUREMENT e e 6-14
Command Syntax e 6-15
Parameters e e 6-16
EXAMIDIES . oot e e e e e e e 6-16

Chapter 7. USING INTERACTIVE COMMANDS FOR PROGRAM DEBUGGING

INTRODUGCTION .. i i ettt ettt e e e e ettt 71
BREAKPOINT S . .o it e 7-2
Command Syntax e 7-2
Parameters e e 7-2
EXamIeS . . o e 7-3
DISPLAY COMMAND . .t et et et e e et et e et s et ee e e e 7-4
Command SyntaX 7-4
Parameters e e e e e 7-4
EXamMIPIES . . o e e e 7-5
MODIFY COMMAND . ..ottt it ettt ettt e ettt 7-6
Command SYyNtax e e e 7-6
Parameters 7-7
EXaMPIES . o e e e e 7-8

High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont’d)

Chapter 8. SELECTING AND FORMATTING THE MEASUREMENT DISPLAY

INTRODUCTION Lttt e e e e ettt e et 8-1
VIEWING THE MEASUREMENT DATA e e 8-1
DISP LAY FIELDS .. it e e ettt e et e s 8-1
Source Field e 8-1
Source Path Field e 8-2
Symbol Field e 8-2
Symbol Path Field 8-2
Value Field e e 8-2
Status Field 8-2
INTERPRETING THE DISPLAY ... i e et 8-2
CUITeNt LiNe . .ot e 8-3
Displaying Pad Bytes i e e 8-4
Displaying Variant Records e 8-4
Field and Display Width e e 8-5
lMegal Values 8-5
Special Values 8-5
Incomplete Access To Variables i 8-6
DISPLAY COMMAND e e e e e e et 8-6
Command Syntax i e e 8-6
Parameters e 8-6
EXaMPIES . oo 8-7
COPY COMMAND ..o e e e e e e et 8-8
Command Syntax e 8-8
ParamMEErS . . o oo e 8-8
EXaMIPIES . ot 8-9
SHOW COMMAND e et e e e e e et 8-9
Command Syntax e 8-9
STATE NUMBER PROMPT . .. e e e e e e 8-10

Chapter 9. CONFIGURING THE ANALYZER

INTRODUCTION . . e e e ettt es 9-1
GETTING THE MEASUREMENT CONFIGURATION LASTUSED. 9-1
GETTING A MEASUREMENT CONFIGURATION FROM A CONFIGURATION FILE. 9-2
Saving A Measurement Configuration 9-2
Loading A Measurement Configuration 9-3
GETTING A MEASUREMENT CONFIGURATION FROM A COMMAND FILE........... 9-3

Chapter 10. USING SUPPORT COMMANDS

INTRODUCTION .o e e e et e e e e et e e e 10-1
SYSTEM SOFTWARE CONVENTIONS i e e 10-1
User Identification 10-1
Directed Syntax e 10-1
Entering Numeric Values e 10-2

Vi

High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont’d)

Entering Module/Variable Names i 10-2
Command FileSot e e e 10-2
Logging Commands e 10-3
File NaMES . . oo e e e e 10-3
SOFTKEY UTILITY COMMANDS e 10-3
Execute Softkey i 10-3
Copy SOftKeY . . o 10-3
Show SOftKEY . ..o 10-3
End SOftKey . .. e 10-4
Halt Softkey e e 10-4
Wait SOftKeY . . .o e 10-4
KEYBOARD UTILITY KEYS . . . e e 10-4
ReCall KeY .. 10-5
Tab KBy .ot 10-5
Insert Char And Delete Char Keys i e e e 10-5
PROMPT SOFTKEY S ..ttt e e e e e e e et e 10-5

Chapter 11. SYMBOLS AND DATA TYPES

INTRODUGCTION .. ittt et et e e ettt e e 111
SYMBOL CLASSIFICATIONS e e e et et e e 11-1
Static Symbols e e e 11-1
LOCAL AND GLOBAL VARIABLES. e 111
PROGRAMS, MODULES, PROCEDURES,
AND FUNCTIONS ... e e e e e ettt i 111
LABELS . .. e 11-2
LINE NUMBERS et e et 11-2
PATHS . 11-2
PrOC . o o e e e 11-2
= 11-2
Default Path o e 11-2
DynamiC SymboOIS e e 11-3
LOCAL VARIABLES e i e e e 11-3
REFERENCE PARAMETERS i 11-3
VALUE PARAMETERS e e e e e e 11-3
SYMBOLIC DATA TYPES . .. e e e et e e e e e 11-3
INtrinsic Data TYPeS . ..o e 11-3
Structured Data TYPeS . . oo ittt e 11-5
ARRAY . 11-5
POINTERS . oo e e 11-5
SET . oot e e 11-5
RECORD/STRUCTURE et e e 11-5
VARIANT RECORDS/UNIONS e e e 11-5

vii

High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont'd)

Appendix A. OPERATING SYNTAX DIAGRAMS

Appendix B. STATUS, ERROR, AND SOFTKEY PROMPT MESSAGES

Appendix C. STACK ARCHITECTURE AND MEMORY STRUCTURE

INTRODUCTION . . e ettt
STACK ARCHITECTURE ... i et et e e
Pascal Compiler Considerations
C Compiler Considerations i e

Appendix D. GLOSSARY OF SOFTKEY LABELS

Appendix E. RESOLVING MEASUREMENT PROBLEMS

Missing Source Statements.
Missing Symbols On The Displayt i e e
Unexpected Analyzer Execution i
Unexpected Emulation Operation i e e
Unexpected Error Or Status Message. i
Unexpected Source Line. e
Unexpected Symbols On The Display it e
Unexpected Termination of Measurement.,
Unexpected Value On The Displayttt e e e

Appendix F. SPECIFICATIONS

Index

viii

High Level Software Analyzer
Table of Contents

LIST OF ILLUSTRATIONS

1-1. Trace Data_flow Measurement Display 1-3
1-2. Trace Modules Measurement Display i 1-4
1-3. Trace Statements Measurement Display 1-5
1-4. Trace Variables Measurements Display i 1-6
3-1. Utility Keys Used To Access the Analyzer 3-10
3-2. Listing of Example Pascal Program. i 3-11
3-3. Software Analyzer Setup Display i 3-13
3-4. Trace Modules Measurement Display i, 3-15
4-1. Software Analyzer Symbolic Interface 4.2
4-2. Generate Database Command Syntax Diagram 4-5
4-3. Database check Command Syntax Diagram. 4-6
6-1. Setup Trace Data Flow Syntax Diagram, 6-4
6-2. Trace Data Flow Measurement Display. 6-7
6-3. Setup Trace Modules Syntax Diagram. it i 6-8
6-4. Trace Modules Measurement Display i 6-10
6-5. Setup Trace Statements Syntax Diagram. i i 6-12
6-6. Trace Statements Measurement Display i, 6-14
6-7. Setup Trace Variables Syntax Diagram i 6-15
6-8. Trace Variables Measurement Display 6-18
7-1. Setup Breakpoints Syntax Diagram 7-2
7-2. Display Variables Syntax Diagram e 7-4
7-3. Modify Variables Syntax Diagram e 7-6
8-1. Compiler Listing File For Program EXAMPLE 8-3
8-2. Sample Display Showing How Pad Bytes, Variant Records,

and Field Widths Are Displayed. it i i et iee e 8-4
8-3. Example Display Showing lllegal Values, Special Values,

and Incomplete Accessto Values. 8-5
8-4. Display Command Syntax Diagram 8-7
8-5. Copy Command Syntax Diagram.t e it 8-8
8-6. Show Command Syntax Diagramttt ittt it e e 8-9
A-1. Software Analyzer Level Syntax Diagram i, A-2
A-2. Run Syntax Diagram e A-3
A-3. Setup Syntax Diagram. e A-3
A-4. Setup Trace Data Flow Syntax Diagram it A-4
A-5. Setup Trace Modules Syntax Diagram. i A-4
A-6. Setup Trace Statements Syntax Diagram. A-5
A-7. Setup Trace Variables Syntax Diagram i i e e A-5
A-8. Setup Breakpoints Syntax Diagram A-6
A-9. Setup Default Path Syntax Diagram, A-6
A-10. Database check Syntax Diagram A-6
A-11. Display Variables Syntax Diagram, . i i i i A-7
A-12. Modify Variables Syntax Diagram i e A-7
A-13. Show Command Syntax Diagram it A-7
A-14. Display Command Syntax Diagram ittt A-8
A-15. Copy Command Syntax Diagram (Measurement Display) A-8

High Level Software Analyzer
Table of Contents

LIST OF ILLUSTRATIONS (Cont'd)

A-16. Load Command Syntax Diagram.ottt e A-9
A-17. Configuration Command Syntax Diagram A-9
A-18. Copy Command Syntax Diagram (Setup Display) A-9
A-19. Variable Syntax Diagram A-10
A-20. P_variable Syntax Diagram A-10
A-21. C variable Syntax Diagram A-10
C-1. Pascal Stack Frame. e C-2
C-2. C Stack Frame (Fixed Parameters Options On). C-3
C-3. C Stack Frame (Fixed Parameters Options Off). C-4

LIST OF TABLES

11-1. Intrinsic Data Typeso e e 11-3
B-1. Status MeSsageso o e B-1
B-2. Error MeSSages . . . o o ottt e B-3
B-3. Softkey Prompt Messages.t e B-8
D-1. Software Analyzer Softkey Labels. i D-1

High Level Software Analyzer
Table of Contents

NOTES

Xi

High Level Software Analyzer
Using This Manual

USING THIS MANUAL

The contents of this manual are summarized in the following paragraphs as an aid in locating
information.

Chapter 1, General Information, provides an overview of how the software analyzer fits within the
environment of the software life cycle. It also gives an overview of the software analyzer’s

measurement capabilities.

Chapter 2, Installation, describes the system components required to run the analyzer package and
the procedures for installing those components. It also describes how to make duplicate copies of
the analyzer software for backup.

Chapter 3, Getting Started, provides a description of the major softkey levels, and step-by-step
procedures for preparing the system for measurements, configuring a measurement, and saving
measurement configurations on disc. This chapter takes the user through the entire measurement
process step-by-step, familiarizing the user with the steps required to make a measurement. It
also gives guidelines for writing code to achieve the best results from your software analyzer.

Chapter 4, Building Database Files, describes the symbolic interface and how the data base is built
when a program is compiled and linked. It also describes how to verify that the database file is
correct. Compiler directives and the implications of their use with the software analyzer are also

discussed.

Chapter 5, Controlling the Emulator, gives information on loading and running programs with the
emulation system. This chapter describes the emulation commands available from within the soft-

ware analyzer.

Chapter 6, Making Trace Measurements, gives general information about trace measurements and
provides comprehensive descriptions of each of the trace measurements. The detailed command
syntax for each measurement is given, all parameters used in the commands are defined, and an
example of each measurement is shown and explained.

Chapter 7, Using Interactive Commands For Program Debugging, describes how breakpoints and
the display and modify commands can be used to interact with the user program to aid in software

debugging.

Chapter 8, Selecting and Formatting the Measurement Display, describes the conventions and fea-
tures of the measurement display, the commands used to select data to be displayed on the CRT,
and methods for optimizing the data display.

Chapter 9, Configuring the Analyzer, describes how to both manually and automatically configure
the analyzer for measurements.

Chapter 10, Using Support Commands, identifies and describes system software conventions, utility
commands, utility keyboard keys, and software prompts.

Chapter 11, Symbols and Data Types, provides information regarding the symbol storage classes
and data types that the software analyzer recognizes.

Appendices A through F provide operating syntax diagrams, status and error messages, processor
specific information, softkey prompts, a glossary of softkey labels, solutions to measurement
problems, and the software analyzer specifications.

An index is provided for quick reference to specific items.

Xii

Chapter 1

GENERAL INFORMATION

INTRODUCTION

The HP 64330 Series High Level Software Analyzers are software development tools designed for
HP 64000 Development System users developing microprocessor code in Pascal or C languages.
The software analyzer provides you with the capability to debug software at the source code level.
The analyzer enables users to reference procedures and data structures in a program as they were
originally described in the high level source code. The analyzer includes both global and local
measurements. Global measurements provide you with an overview of program activity enabling
fault isolation to the module level. The local measurements then enable you to pinpoint problems
within the faulty module.

MANUAL APPLICABILITY

This manual applies to the following High Level Analyzer products:

HP 64331A for use with HP 64242S Emulation Subsystem (68000)

HP 64331B for use with HP 64243AA/AB Emulation Subsystems (68000)
HP 64334A for use with HP 64249S Emulation Subsystem (68010)

HP 64334B for use with HP 64245AA/AB Emulation Subsystems (68010)
HP 64337A for use with HP 64244AA Emulation Subsystem (68008)

These analyzers require the appropriate emulation subsystem, emulation memory subsystem, HP
64302A Internal Analyzer, and an HP 64815 Pascal or HP 64819 C cross compiler. The software
analyzer works with the emulation subsystem. Trace measurements are made using the emulation
bus analyzer. The acquired data is processed and displayed in the appropriate format. The code
being analyzed must be compiled using the HP 64000 Pascal or C compiler.

NOTE

Unless otherwise specified, explanations and examples in this manual
apply to all high level software analyzers listed in the preceding para-
graph. Most examples in this manual were generated using the HP
64334A High Level Software Analyzer for 68010 processors.

1-1

High Level Software Analyzer
General Information

USING SOFTWARE ANALYSIS TO INCREASE
SOFTWARE ENGINEERING PRODUCTIVITY

The software analyzer provides software designers with a powerful tool that can improve their ef-
ficiency in both the development and maintenance phases of the software life cycle.

An effective approach to software development is to break an overall software task down into
many independent modules with well-defined interfaces. Each module must be implemented, test-
ed, debugged, and integrated with the other modules. The software analyzer with its trace variable
and trace statements measurements allows the software designer to view software in a real execu-
tion environment at the level it was written, providing insights and understanding of the code that
can significantly reduce the time required for test and debug of software modules. Questions such
as what is the value of a variable and how was it modified are answered directly.

When integrating modules to form the overall software task, the designer must verify that each
module is called in the correct sequence and that parameters passed between modules are cor-
rect. The software analyzer’'s global type measurements were designed for this purpose. The
trace modules and trace data flow measurements provide this global overview of the software
task. The trace modules measurement traces procedures and displays what procedures were cal-
led, the order they were called, and which source line they were called from. The trace data_flow
measurement traces the data being passed to and from procedures using the parameter names
defined by the designer. This ability to have a global overview of a software task with data dis-
played in the same high level constructs defined by the software designer enables fast analysis and
identification of problems.

The maintenance phase of the software life cycle can be expensive in terms of time and resources.
A large part of the maintenance is involved with fixing bugs and making enhancements to released
products. The same analysis needs are present in the maintenance phase that are present in the
development phase for new software products. The software analyzer can help reduce costs
during the maintenance phase as it does during the development phase by improving the efficien-
cy of software designers.

PREVIEWING MEASUREMENT CAPABILITIES

Trace Measurements

The following paragraphs provide an overview of the trace measurement capabilities of the soft-
ware analyzer. The use of each measurement and the information displayed in the trace listings
are described. Trace measurements are made automatically using the emulation bus analyzer and
then the acquired data is processed and displayed on the screen in the selected format. The soft-
ware analyzer executes four trace measurements. These measurements are; (1) trace data_flow,
(2) trace modules, (3) trace statements, and (4) trace variables. These measurements are described
in the following paragraphs. For detailed information on how to use the trace measurement
commands, refer to chapter 6, Making Trace Measurements. The measurement display formats
are described in detail in chapter 8., Selecting and Formatting the Measurement Display.

1-2

High Level Software Analyzer
General Information

TRACE DATA_FLOW. The trace data_ flow measurement provides an overview of program data
flow at the module level. If a module is not executing correctly, this measurement gives a user the
capability to correlate input and output data with module execution, isolating the problem to either
the input data or the logic of the module itself.

The trace data flow measurement traces the values of program variables at the entry and/or exit
points of specified procedures or functions. Two types of data can be traced; parameters of the
procedure or function and variables defined external to the specified procedure or function. Local
variables declared within a specified procedure or function cannot be traced in this measurement
mode. Local variables do not exist outside of the procedure or function in which they are
declared. For each procedure, tracing may be done on entry to the procedure, on exit from the
procedure, or both entry and exit. Tracing on entry records the values of the variables on entry to
the procedure and tracing on exit records the values on exit from the procedure. Tracing on both
entry and exit records both the entry and exit values.

The default trace data flow measurement display consists of four fields as shown in figure 1-1.
These fields are Symbol, Value, Stat, and Source. The symbol field contains the name of the
specified procedure or function followed by the names of the traced variables (indented). In the
line containing the procedure name, the value field is blank. The stat field indicates whether the
line is the entry point or the exit point of the procedure. If the line is the entry point of the proce-
dure, the source field contains the source file statement and line number corresponding to the line
from which the procedure is called. In the lines containing the variable symbol, the stat and
source fields will be blank and the value field will contain the value of the variable expressed in the
notation of its data type (integer, real, etc.).

64330 Software Analyzer: Slot 7 with emé8010 Emulator: Slot 8

Symbol Value Stat Source
recursive_proc entry 25 recursive_proc (fparml, fparml, fp
rpl 2
rp3
count 2
recursive_proc entry 108 recursive_proc (rpl, rp2, rp3, rp
rpl 3
rp3 4
count 3
recursive_proc entry 108 recursive_proc (rpl, rp2, rp3, rp
rp1 4
rp3
count
recursive proc exit
count 5
STATUS: Awaiting command 20 10:1
<STATE #> display copy show end

Figure 1-1. Trace Data_flow Measurement Display

1-3

High Level Software Analyzer
General Information

TRACE MODULES. The trace modules measurement gives you an overview of a program’s control
flow at the module level. This measurement provides the capability to isolate a problem to a
specific module and to provide a history of the module calls leading up to the problem. The trace
modules measurement traces the execution sequence of program modules. As procedure and
function calls are executed, the module name is listed with indentation used to indicate nesting
level. The measurement can be set up to trace all modules in a specific file or group of files or to
trace only specific modules in a file or group of files.

The default trace modules measurement display consists of three fields; symbol, status, and source
as shown in figure 1-2. The symbol field contains the name of the traced module. Indentation is
used to show the nesting level at which the module was called relative to the start of the trace.
Figure 1-2 shows how recursive and nested procedures and functions are displayed by the soft-
ware analyzer. The stat field indicates whether the display line represents the entry point or exit
point of the module. If it is the entry point to the module, then the source file statement which cal-
led the module and its line number are displayed in the source field.

64330 Software Analyzer: Slot 7 with em68010 Emulator: Slot 8

Symbol Stat Source
proci entry 210 procl1 (count, count + 2);
recursive proc entry 133 recursive proc (fparml, fparm2, fparm2,
recursive proc entry 108 recursive proc (rpl, rp2, rp3, rp4, rp5,
recursive proc entry 108 recursive proc (rpl, rp2, rp3, rp4, rp5,

recursive_proc entry 108 recursive_proc (rpl1, rp2, rp3, rp4, rp5,
recursive_proc exit

recursive proc exit
recursive _proc exit
recursive_proc exit
procl exit
proc2 entry 211 proc2 (count + 2);
nested proc entry 155 nested_proc (a);
nested proc exit
proc2 exit
STATUS: Awaijting command 12 11:16
<STATE #> display copy show end

Figure 1-2. Trace Modules Measurement Display

High Level Software Analyzer
General Information

TRACE STATEMENTS. The trace statements measurement gives you a detailed view of a small
section of code. Once a problem is isolated to a particular module, the trace statements
measurement allows a close inspection of this code to more precisely determine the problem.

The trace statements measurement traces the execution of statements and the value of all vari-
ables in each statement in a defined program block. The program block can be defined as a line
range, a procedure, or a function. All lines in the specified line range must be contained within a
single module. This module may be a procedure, function, or main program block in Pascal, or a
function in C.

Figure 1-3 shows a trace statements measurement display. Four fields are displayed in the default
trace list; source, symbol, value, and stat. The source field contains the source statement and line
number. The symbol field contains the name of the variable accessed by the source statement. If
more than one variable is accessed in the source statement, additional variables are displayed on
subsequent lines of the display. The value field displays the value of the variable in the data type
notation that the variable was declared in the source program. The stat (status) field displays
whether the variable access was a memory read or write operation.

64330 Software Analyzer: Slot 8 with emé68010 Emulator: Slot 9

Source Symbol Value Stat

Break for new stack information

93 PTR".I1 := PTR".I1-1; PTR 000003026H read
94 INT1:=1;
95 D:=D-1; (*Scoped variable*) INT1 1.00000E0 write
96 P2:=RP1; (*STATIC CALLBYNAME CALLBYNAME* D 4 read
D 3 write
RP1 2 read
97 P2:=RP2; (*STATIC CALLBYNAME CALLBYVALU* P2 2 write
RP2 2 read
98 P2:=RP3; (*STATIC CALLBYVALU CALLBYNAME* P2 2 write
RP3 4 read
99 P2:=RP4; (*STATIC CALLBYVALU CALLBYVALU* P2 4 write
RP4 4 read
100 P2:=RP5; (* DYNAMIC CALLBYNAME* P2 4 write
STATUS: Awaiting command 108 . 12:56
<STATE #> display copy show end

Figure 1-3. Trace Statements Measurement Display

1-5

High Level Software Analyzer
General Information

TRACE VARIABLES. Trace variables gives you a history of a set of variables. If a variable is
suspected of containing bad data, the variable can be traced to reveal where it is modified and
what value it receives. The trace variables measurement enables specific data elements (variables)
to be traced and the code that accesses these variables to be located. The variable or variables
specified are traced during the execution of the program, and displayed with their values and the
source lines from which they were accessed.

The trace variables measurement allows you to trace up to 10 variables. The variables may be in
the same file or different files. If the variables are spread out over a large address range in
memory, the measurement will take a longer time to fill the trace buffer during execution than if
the variables are spread over a small address range. You can qualify the trace variables measure-
ment to trace read only accesses, write only accesses, or both read and write accesses.

A default trace variables measurement display is shown in figure 1-4. The symbol field contains
the name of the variable traced. The value field displays the value of the variable. The stat field
indicates whether the access to the variable was a read or write operation. The source field shows
the source file line number and the source statement.

64330 Software Analyzer: Slot 8 with emé68010 Emulator: Slot 9

Symbol Value Stat Source

Q.1 123 write 205 Q.1 :=123;
Q.REAL_NUMBER 2.00000E0 write 206 Q.REAL_NUMBER :=2;

Q.FLAG TRUE write 206 Q.REAL NUMBER :=2;

Q.SETT [RED,BLUE,WHITE] write 208 Q.SETT :=[RED,WHITE,BLU
Q.N 0 write 208 Q.SETT :=[RED,WHITE,BLU
Q.VARIANT1[RED] RED write 210 Q.VARIANT1 :=A;

Q.VARIANT1 [ORANGE] ORANGE write 210 Q.VARIANTI1 :=A;
Q.VARIANT1[YELLOW] YELLOW write 210 Q.VARIANT1 1=A;
Q.VARIANT1[05H?] E2H write 210 Q.VARIANTI :=A;

Q.CHAR1 "M owrite 211 Q.CHAR1 LN

Q.1 123 write 205 Q.1 :=123;

Q.REAL NUMBER 2.00000E0 write 206 Q.REAL_NUMBER :=2;

Q.FLAG TRUE write 206 Q.REAL NUMBER :=2;

Q.SETT [RED,BLUE,WHITE] write 208 Q.SETT :=[RED,WHITE,BLU
STATUS: Awaiting command 15 _ 13:01
<STATE #> display copy show end

Figure 1-4. Trace Variables Measurement Display

High Level Software Analyzer
General Information

Interactive Capabilities

In addition to the trace measurement capabilities, the software analyzer also has commands that
allow you to interact with the emulator without exiting the analyzer. These commands are setup

breakpoints and display/modify variables.

BREAKPOINTS. The software analyzer provides you with the capability to define breakpoints. This
enables you to command the emulation system to perform a "break on execution.” The breakpoint
may be specified as (1) any valid address of an opcode, (2) any Pascal or C source line containing
executable code, or (3) the entry or exit point of a module (procedure or function). Up to 16 soft-
ware breakpoints can be defined with the setup breakpoints command.

DISPLAY/MODIFY VARIABLES. The display variables command displays the current value of a
variable in emulation memory. The variable is specified in the same notation that it is specified in
the source file. The modify variables command allows a variable to be modified manually by the
user. The variable can be set to a specified value in integer format. The user program must be
haited and the emulator running in the emulation monitor before the display or modify commands
can be executed. Detailed descriptions of how to use these commands are given in chapter 7,
Using Interactive Commands for For Program Debugging.

Emulation Control

The software analyzer includes a subset of the emulator operational commands. The break, load,
reset, and run commands enable you to have control over emulation from within the analyzer.
These are the four basic commands needed to control a user’s program running in emulation
memory. The incorporation of the emulator commands simplify the interface between the user
and the system by providing the means for the user to control the emulator without exiting the
software analyzer.

BREAK. a break causes the processor to be diverted from execution of the user program to the
emulation monitor. A break is defined as a transition from execution of a user’s program to the
emulation monitor.

LOAD. The load command transfers absolute code from the HP 64000 system disc into user RAM
or emulation memory. The destination of the absolute code is determined by the memory con-
figuration map which was set up during emulation configuration and the address specified during
linking.

RESET. A reset suspends target system operation and reestablishes initial operating parameters,
such as reloading control registers. The reset signal is latched when active and is released by the

run command.

RUN. If the processor is in a reset state, the run command will cause the reset to be released. If a
from address is specified, the processor will be directed to that address. If the processor is run-
ning in the emulation monitor, the run command causes the processor to exit into the user
program. The program can either be run from (1) the transfer address of the user’s program, (2) a

1-7

High Level Software Analyzer
General Information

specified address, (3) a specified line number in the source code, (4) from the entry point of a
specified module, or (5) from the address currently stored in the processor’s program counter.

SOFTWARE MATERIALS SUBSCRIPTION

Hewlett-Packard offers a Software Materials Subscription (SMS) to provide you with the most time-
ly and comprehensive information concerning your HP 64000 Logic Development System. This
service can maximize the productivity of your HP system by ensuring that you have the latest
product enhancements, software revisions, and software reference manuals.

Consult with your local HP Field Representative for a complete list of available software update
products (HP 64XXXAU), one-time product updates (HP 64XXXAX), and current prices.

By purchasing SMS, you will obtain the following:
Software Updates
Reference Manual Updates
Software Problem Reporting
Software Release Bulletins

Software Status Bulletins
General User Information

Software Updates

Software Updates may address specific anomalies in HP software or enhance the capability of the
HP software in your system.

Reference Manual Updates

Reference manual updates assure that you always have the most recent documentation on a time-
ly basis, and are aware of how to use any new features on the latest software releases.

Software Problem Reporting

Software problem reporting is provided so that you may inform HP of a discrepancy or problem
found in the HP 64000 software or documentation.

Software Release Bulletins

Software Release Bulletins document all fixes and enhancements that are incorporated in the latest

release of the HP 64000.

Software Status Bulletins

Software status bulletins contain timely information on the reported operational status of HP
software and documentation. These bulletins also provide temporary corrections or ways to work

1-8

High Level Software Analyzer
General Information

around anomalies in HP software which have been located by HP personnel or HP 64000 users.
You may reference these bulletins to see of a solution is already documented.

General User Information
General user information is documentation that contains operational tips, programming techniques,

application notes, latest listings of software products and reference manuals, and other items of
general interest to HP 64000 users.

1-9

High Level Software Analyzer
General Information

NOTES

Chapter 2

INSTALLING THE SOFTWARE ANALYZER

INTRODUCTION

A floppy disc containing the analyzer software is required for operation. In addition to the analyzer
software, your HP 64000 development station must have a complete emulation system for the
processor you are working with, including a Model 64302A Internal Analyzer. Also you must have
the HP 64000 Pascal or C compiler for your processor. If your Model 64100A or 64110A
development station has a serial number prefix lower than 2309A, you also need a Model 64032A
Memory Expansion Module.

INSTALLATION

Install the emulation system in accordance with instructions given in the emulation operating
manual. The HP 64032A memory expansion module, if used, may be installed in any unused card
slot in the development station card cage.

MAKING DUPLICATE COPIES OF FLOPPY DISC SOFTWARE

Your software analyzer was shipped on two floppy discs. You should make another copy of the
floppy discs for your use and protect the original discs that you received from Hewlett-Packard.
The following procedure describes how to make duplicate floppy discs so that the original discs
may be stored for safekeeping.

To make a duplicate floppy disc, proceed as follows:

1. Remove a new blank floppy disc from its container and label it SOFTWARE ANALYZER. Do
not write directly on the floppy disc; this can damage the floppy. Use stick-on labels, if
available, or a felt-tip pen.

2. Install the original disc for the software analyzer in disc drive O of your 64000 station.

3. Install the new blank SOFTWARE ANALYZER in disc drive 1.

4. From the system monitor softkey level, press the following softkeys in the sequence shown:

--BACKUP- floppy utilities
5. The CRT display will show an explanation of the floppy utilities routines. A floppy disc must

be formatted prior to use. Formatting initializes the disc, preparing it to receive information.
To format the disc, press the format softkey and the "1" key, then press the key.

2-1

High Level Software Analyzer
Installation

6. When disc 1 formatting is completed, press the duplicate softkey and the "0" key, then
press the key. The contents of the software analyzer disc will be duplicated on the
blank formatted disc in disc drive 1.

Perform the preceding steps for each of the software analyzer discs. This completes the proce-
dure for making user "SOFTWARE ANALYZER" discs.

2-2

Chapter 3

GETTING STARTED

INTRODUCTION

This chapter contains information to help you become familiar with the operation of the software
analyzer. You will learn about the first level of analyzer softkeys and how to use them in specify-
ing a measurement. You will learn how to build the database files required by the analyzer. You
will also learn to enter measurement specifications in the software analyzer and to gather data as a
result of the measurement specifications you set up. In addition, you will learn to save a configura-
tion to a file and reload that configuration at a later time. Guidelines for writing code to achieve
the best results from the software analyzer are given at the end of this chapter.

If you have any difficulties or problems when using the software analyzer, see appendix E,
Resolving Measurement Problems, for possible solutions.

MAJOR SOFTKEY LEVELS

The software analyzer has a user-friendly interface designed to provide you with easily definable
options to examine Pascal and C programs. The user-friendly interface provides a logical struc-
tural breakdown and guided syntax softkeys that make definition of measurements easy.

The major softkey levels of the software analyzer are the setup, display, modify, show, execute,
end, run, break, reset, load, configure, and copy softkeys. These softkeys are discussed briefly in
the following paragraphs. This brief account of each key allows you to become familiar enough
with them to perform the familiarization exercises detailed later in this chapter. A detailed explana-
tion of all the softkeys used in, and under, the major softkey levels is given in later chapters.
Syntax diagrams for the major softkey level functions are given in appendix A.

setup The setup softkey allows you to specify; (1) the type of trace measurement to be
made with the parameters to be traced, (2) the breakpoint condition(s) to stop your
program execution, (3) the default path to be used in measurement specifications,
i.e., the procedure and/or file information, and (4) the acquisition depth, i.e., the
amount of data to be acquired and stored in the analyzer trace file.

display Pressing the display softkey and entering a variable name and path (if other than
the default path) causes the value of the specified Pascal or C variable to be dis-
played. The command allows you to specify a variable in a defined program
module and absolute file.

modify The modify softkey enables you to modify the current value of a variable in

memory. The variable can be set to a specific value which must be entered as a
simple integer value less than or equal to 32 bits in width.

3-1

High Level Software Analyzer

Getting Started

show

execute

end

run

break

reset

load

configure

copy

<CMDFILE>

The show softkey allows you to switch between the measurement setup display or
the measurement data display, providing that valid measurement data is available
for display.

The execute softkey causes execution of a trace measurement, of software break-
points, or both.

Pressing the end softkey one time causes the subsystem to terminate the current
measurement session and places the 64000 station back into the measurement
system monitor. The software analyzer can be reentered from this level simply by
pressing the sw_anly softkey. The end softkey also saves the current configura-
tion in the default configuration file and updates the emulation command
(emul_com) file.

The run softkey allows you to start execution of the user program in emulation
without exiting the software analyzer. When the processor is in a reset state, the
run command causes the reset to release. When a from address is specified, the
processor is directed to that address. If the processor is running in emulation
monitor, the run command causes the processor to exit into the user program.

Pressing the break softkey causes the processor to be diverted from execution of
the user program to the emulation monitor.

The reset softkey allows you to suspend target system operation and reestablish
initial emulator operating parameters. The reset signal is latched when active and
is released by the run command.

The load softkey allows you to transfer absolute code from the 64000 system disc
into user RAM or emulation memory. The destination of the absolute code is
determined by the memory configuration map which was set up during emulation
configuration and the address specified during linking.

The configure softkey allows you to either save or load the complete analyzer
configuration to or from a file.

The copy softkey allows you to copy the measurement setup, measurement data,
or the current display to either a file or the printer.

The <CMDFILE> softkey is a prompt informing the user that a command file may
be executed at this level to automatically execute software analyzer commands.

PREPARING THE SYSTEM FOR MEASUREMENTS

The information contained in this section is provided to help you become familiar with the basic
operation of the software analyzer. You will be lead through the steps required to configure the
64000 system for performing basic software measurements. You will learn how to gain access to
the analysis functions and how to setup the analyzer to make a simple trace modules

measurement.

3-2

High Level Software Analyzer
Getting Started

Initial Turn On

NOTE

The following procedure assumes that you have installed an emulation
system in your development station, you have the floppy disc containing
the software analyzer software, and you are in a cluster with a hard disc.

1. Connect operating power to the development station.

2. Turn on the power switch. The associated indicator lamp (on 64110 development stations)
will light.

3. Boot in the software analyzer software following the instructions given in the 64000 System
Software Manual.

4. When the software has been successfully booted on your system disc, the display will come
up with the units connected to the bus identified. The monitor level of softkeys will be dis-
played on the bottom of the screen.

5. You may, at this time, wish to assign a user identity code to your activity with the station.
The software records your userid and assigns any files you may make to your userid. The
userid must start with an upper case alphabetic character and is limited to six characters.
After the first letter, the other five characters may be alphanumeric. To assign your userid
press the ---ETC--- softkey twice, press the userid softkey, type in the userid you have
selected, and press the RETURN) key. If no userid is selected, the default condition is a blank
userid.

~-ETC-— - ETC-- userid <USERID>

Building Database Files

The basis of the software analyzer measurements are the comp_db (compiler database) files. All
files to be debugged with the software analyzer must have an associated comp db file. The
comp_db files allow the software analyzer to decode symbols into addresses and the addresses
back into symbols. Comp_db files provide information on the symbol types (used for display
purposes) and ownership of symbols by functions, procedures, or files. Comp_db files can be
generated in two ways; (1) by compiling the source file with option comp sym and linking with
option comp db, or (2) by using the generate database utility (gen_db).

GENERATING COMP_DB FILES AT COMPILE AND LINK TIME. The most efficient method of
generating comp_db files for source files compiled on your HP 64000 Development Station is to
compile the files using the comp sym (compiler symbol) option and to link the files using the
comp _db option. The following two steps build the comp_db file required by the software
analyzer.

3-3

High Level Software Analyzer
Getting Started

1. Compile all files that you wish to debug using the comp sym option. This option specifies
the saving of the compiler symbol file, making it available to the linker for use in generating
the comp_db file. The command is:

compile MYFILE options .. comp sym (RETURN

The "..." located between options and comp sym indicates that other options may be
specified in addition to the comp sym option. However, the comp sym option must be the
last in the list of options.

The compiler symbol file includes the following information; the processor for which the file
was compiled, the language the file was written in, the names, addresses, and data sizes for
modules, and the names, types, sizes and locations of variables unique to each module.
The compiler symbol file is not automatically saved after each compilation.

An asmb_sym (assembler symbol) file is created for every file compiled unless the nocode
option is included in the compile command. The contents of the asmb_sym file for a com-
piled file include local symbol names and relocatable or absolute addresses for those local
symbols. Also, the addresses for line numbers are recorded here. In order for the analyzer
to execute correctly, the asmb_sym file must be created for each file to be analyzed.

NOTE

DO NOT compile the file to be analyzed with the option nocode. This
suppresses the creation of an assembly symbol file, a file required for
proper operation of the software analyzer.

2. Next, the compiled files must be linked. The command is:
link LINK _COM _ FILE options .. comp db

The link_sym (linker symbol) file is created during the linking process and contains informa-
tion about all files included in the link command. Included are global symbol names and
their relocated addresses, source names and their relocated addresses, and a list of memory
space used by the linked files.

A database file is created at link time, when options comp db is specified, for each file that
was compiled with the comp_sym option. The comp db must be the last specified option
in the link command, as comp_sym is in the compile command.

GENERATING COMP_DB FILES USING THE GENERATE_DATABASE UTILITY. The
generate database utility allows you to generate a comp_db file for files developed in a hosted
environment using HP 64000 series hosted compilers. The utility also allows you to generate
comp_db files for source files developed on an HP 64000 development station, but not compiled
with the comp_sym option or linked with the comp_db option. The generate database utility
provides the necessary link for performing high level software analysis in an HP 64000
development station of programs developed in the hosted development environment.

3-4

High Level Software Analyzer
Getting Started

Files Required By The Generate_Database Utility. The generate_database utility requires the fol-
lowing files to be downloaded from the hosted development environment:

Pascal and C source files
Absolute files (.X)
Asmb_sym files (.A)
Link_sym files (.L)

A high level debug files transfer utility is available on the hosted system. This utility transfers all
files required by the generate database utility. See the Hosted Development System User’'s Guide
for detailed information on the transfer utility.

Executing the Generate Database Command. Executing the following command generates a
comp__db file for source file MY_FILE:

generate_database MY _FILE using LINK_SYM FILE

Where LINK_SYM_FILE is a valid link_sym file and MY_FILE is a source file referenced in
the link_sym file.

This command first executes pass 1 of the compiler to generate the required comp_sym file. It
then uses the asmb_sym, comp_sym, and link_sym files to generate the comp_db file. If a valid
comp_sym file exists, then the following command may be executed:

generate _database comp db MY FILE using LINK _SYM FILE
This command uses the existing comp_sym file, eliminating compiler pass 1 execution.
Before attempting to use the software analyzer, read chapter 4, Building Database Files. This
chapter contains important information on compiling and linking files for analysis.
Defining the Software Breakpoint Vector (HP 64243,64244,64245 Emulators Only)
You must establish a trap vector for software breakpoints for proper operation of the high level

software analyzer. If you have not yet defined the software breakpoint vector for using software
breakpoints in emulation, you must define the trap vector now, as detailed in the following steps:

3-5

High Level Software Analyzer
Getting Started

1.

3-6

Edit the emulation monitor program (file Mon_680NN:HP) and find the following code segment
(NN = 00, 08, or 10 depending on which emulator you are using):

ARAE AR A A AEAAAA KA AAAA A AAAKRAAAAKR KA AAAKR ALK AAA KA A AR A AR AR A ARk ke x
* TRAP VECTORS (SOFTWARE BREAKPOINT VECTORS) CHOOSE ONE

¥ t e e eeemmemsesmecsecscmcscesemesenceenanaceanreneeeeeeean..an

* The TRAP vector you should choose for the software breakpoint

* depends on the trap # chosen in the configuration question.
AAKKAKARKAKRAAAAAAA A AR AR A A AR I I A I Ak ok hhhhhhhhkhhhhhhhdhhhdhhhhkik

* ORG 080H

* DC,L SWKB_ENTRY ;TRAP #0

* ORG 084H

* DC,L SWKB_ENTRY ; TRAP #1

* ORG 088H

* DC,L SWKB_ENTRY ;TRAP #2

* ORG O8CH

* DC,L SWKB_ENTRY ;TRAP #3

* ORG 090H

* DC,L SWKB_ENTRY ;TRAP #4

* ORG 094H

* DC,L SWKB_ENTRY ;TRAP #5

* ORG 098H

* DC,L SWKB_ENTRY ;TRAP #6

* ORG 09CH

* DC,L SWKB_ENTRY ;TRAP #7

* ORG OAOH

* DC,L SWKB_ENTRY ;TRAP #8

* ORG OA4H

* DC,L SWKB_ENTRY ;TRAP #9

* ORG OA8H

* DC,L SWKB_ENTRY ;TRAP #10
* ORG OACH

* DC,L SWKB_ENTRY STRAP #11
* ORG OBOH

* DC,L SWKB_ENTRY ;TRAP #12
* ORG OB4H

* DC,L SWKB_ENTRY ;TRAP #13
* ORG OBS8H

* DC,L SWKB_ENTRY ;TRAP #14
* ORG OBCH

* DC,L SWKB_ENTRY ;TRAP #15

High Level Software Analyzer

Getting Started

2. Remove comment delimiters from the two lines associated with the trap vector you wish to

use. (In this example, trap vector 15 is used.)

FAKKKAKRAKEA KA KA KA KA KA KA KA IR I KA A IR A AR h A AR A ARk k ok hkhkkkhkkkhkhkhhkkx

TRAP VECTORS (SOFTWARE BREAKPOINT VECTORS) CHOOSE ONE

*

*

*

*

*

*

*

*

* % X * X % X X X % * 0% % % ok X X % ¥

*

*

The TRAP vector you should choose for the software breakpoint

depends on the trap # chosen in the configuration question.
LA R R R EE R L EEEREE R R E R SRR R EEEEE R EEREEE SRR R EREEEEEEEREEEEEEEEE LR

ORG 080H

DC,L SWKB_ENTRY
ORG 084H

DC,L SWKB_ENTRY
ORG 088H

DC,L SWKB_ENTRY
ORG 08CH

DC,L SWKB_ENTRY
ORG 09OH

DC,L SWKB_ENTRY
ORG 094H

DC,L SWKB_ENTRY
ORG 098H

DC,L SWKB_ENTRY
ORG 09CH

DC,L SWKB_ENTRY
ORG OAOH

DC,L SWKB_ENTRY
ORG OA4H

DC,L SWKB_ENTRY
ORG OAS8H

DC,L SWKB_ENTRY
ORG OACH

DC,L SWKB_ENTRY
ORG OBOH

DC,L SWKB_ENTRY
ORG O0B4H

DC,L SWKB_ENTRY
ORG 0B8H

DC,L SWKB_ENTRY
ORG OBCH

DC,L SWKB_ENTRY

3. End the edit session.

; TRAP #0

; TRAP #1

;TRAP #2

; TRAP #3

:TRAP #4

;TRAP #5

;s TRAP #6

;TRAP #7

; TRAP #8

; TRAP #9

;TRAP #10

; TRAP #11

;TRAP #12

;TRAP #13

;TRAP #14

;TRAP #15

4. Re-assemble the emulation monitor and relink your program using the comp__db option.

5. Enter the emulator and modify the configuration. Cycle through the emulation configuration

questions until the question "Re-configure emulator pod?" is displayed.

6. Answer "yes" and cycle through the question until the question "Trap number for software
break (0..0FH) ?" is displayed.

3-7

High Level Software Analyzer
Getting Started

7. Answer the question with the trap number you selected in the emulation monitor edit session
(15 or OFH in this example).

8. End the emulation configuration session.

Loading And Executing A Program In Emulation

When the 64000 station is turned on, the softkey label line is displayed on the screen and contains
the meas sys softkey label. When you press the meas sys softkey and the key, the
sw_anly softkey will appear on the softkey label line, along with the name(s) of any emulation sys-
tem in the development station. This is the measurement system level of softkeys. From here, you
will need to enter the emulation system so that you can create an emulation command file which
you will need to use the software analyzer. Refer to the emulator operating manual for detailed in-
structions on creating emulation command files.

Selecting The Emulation Analysis Mode (HP 64243,64244,64245 Emulators only)

The emulator analysis mode must be set to bus_cycle _data in order to use the software analyzer.
From within the emulation subsystem, execute the command modify analysis _mode to
bus_cycle_data. If the emulation analysis mode is not set to bus cycle data, the error message

"Incorrect analysis bus mode for this analyzer" is displayed on the status line when you attempt to
access the software analyzer.

Accessing The Software Analyzer

NOTE

When an intermodule bus measurement is in progress with other
analyzers, the software analyzer cannot be used. The IMB measurement
must be halted first.

After you have generated an emulation command file in an emulation session, you are ready to ac-
cess the software analyzer. Leave the emulation system running and press the end softkey and
the key. This will bring you out to the measurement system level of softkeys. You can
now access the software analyzer by pressing the sw_anly softkey, entering the name of the
emulation command file, and pressing (RETURN).

sw_anly <EMUL_COM_FILE>

If you omit the emulation command file in the command line, the software analyzer will prompt
you for the file;

Emulation command file?

After entering the name of the emulation command file you generated in the emulation session and
pressing (RETURN), you will access the software analyzer, ready to start your analysis session.

3-8

High Level Software Analyzer
Getting Started

NOTE

On first accessing the software analyzer, you must specify an emulation
command file. During the analysis session, you can save the measure-
ment setup in a configuration file. On subsequent uses of the software
analyzer, you can specify either a configuration file or an emulation
command file in the sw_anly command. On ending a measurement ses-
sion, your last measurement setup is stored in the default configuration
file identified with your station HP-IB address and userid.

Figure 3-1 shows the utility softkeys used to gain access to the software analyzer and how to end
out of the analyzer and return to the system monitor level of softkeys. Pressing the end softkey
followed by once will return you to the measurement system level of software. The soft-
ware analyzer will retain its current measurement setup. To go to the system monitor level of
software press the end again. It is now possible to perform operations at this level (edit, copy,
etc.). To reuse the analyzer, and still retain the current measurement setup, press the meas sys
softkey and continue softkeys, then the key. This brings you to the measurement system
level of software. Now press the sw_anly softkey and then the key. You are now back in
the software analyzer with the current measurement setup retained.

NOTE

Pressing the sw_anly softkey when the measurement system is entered
with the continue option restores the last measurement setup used in the
software analyzer if that session was terminated using the end command.
The emulator hardware will be in the same state it was left in provided
that: (1) the 64000 station has not been turned off, (2) the emulator has
not been modified during an emulation session, or (3) ept_test has not
been executed.

3-9

High Level Software Analyzer
Getting Started

MONITOR LEVEL SOFTKEYS

edit compile assemble link meas_sys prom_prog run -—ETC—-~-

INTERMODULE LEVEL SOFTKEYS

state_3 em68010_9 sw_anly print_dsp end

v

HIGH LEVEL SOFTWARE ANALYZER SOFTKEYS

run set_up db_check display modify show execute ——-ETC--—

HIGH LEVEL SOFTWARE ANALYZER SOFTKEYS

load break reset <CMDFILE> configure copy end —-—ETC~--
1

Figure 3-1. Utility Keys Used To Access the Analyzer

PERFORMING A BASIC TRACE MODULES MEASUREMENT

The following measurement example is intended to familiarize you with the software analyzer as
well as show a meaningful measurement on a program written in Pascal. Figure 3-2 shows an out-
line of the program used in the following example. The program listing shows the procedure
declarations and entry and exit points of the procedures traced in the example measurement.

Loading And Running A Program

The first step in preparing to make a measurement is to load the absolute file we wish to analyze
into emulation memory. This source file must have been compiled using the comp sym option
and the absolute file linked using the comp db option as explained previously. These two options
create the symbolic data base required by the software analyzer to interpret and display measure-
ment data. The command is executed by pressing the /ead softkey, typing in the absolute file
name, and pressing the key.

load MYFILE
The next step is running the program in emulation. Entering the command

run at_execution from transfer address (RETURN

3-10

High Level Software Analyzer
Getting Started

causes the user program MYFILE to begin running from its starting address when a measurement
is executed. The at_execution parameter is included here because we wish to ensure that we
trace all modules executed from the beginning of the program. Leaving out the ar _execution pa-
rameter causes the user program to begin running immediately.

1 00000000 1 "68000"
6 00000000 1 $WARN+$
7 00000000 1 SEXTENSIONS ON$
8 00000000 1 PROGRAM TESTP;
13 00000000 1 TYPE
14 00000000 1 INT = SIGNED 16;
15 00000000 1 PTR =~INT;
16 00000000 1 SCALAR TYPE =(BLACK,BROWN,RED, ORANGE, YELLOW, GREEN,BLUE,VIOLET, GREY ,WHITE);
17 00000000 1 DAY OF WEEK =(SUNDAY,MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY);
18 00000000 1 SUBRANGE TYPE =RED..YELLOW;
19 00000000 1 SET_TYPE =SET OF SCALAR_TYPE;
20 00000000 1 ARRAY_TYPEO =ARRAY [DAY_OF WEEK] OF SCALAR TYPE;
21 00000000 1 ARRAY TYPE1 =ARRAY [SUBRANGE TYPE] OF SCALAR TYPE;
22 00000000 1 ARRAY TYPE2 =ARRAY[-3..-11 OF BYTE;
23 00000000 1 ARRAY TYPE3 =ARRAY[0..1] OF ARRAY TYPE2;
24 00000000 1 REC_TYPE PTR ="REC_TYPE;
25 00000000 1 REC_TYPE =RECORD
26 00000000 2 I :SIGNED_32;
27 00000000 2 REAL_NUMBER :REAL;
28 00000000 2 CHAR :CHAR;
29 00000000 2 FLAG :BOOLEAN;
30 00000000 2 SETT :SET_TYPE;
31 00000000 2 NEXT_REC :REC_TYPE_PTR;
32 00000000 2
33 00000000 2 CASE N :BYTE OF
34 00000000 2 1: (VARIANT1 :ARRAY_TYPE1);
35 00000000 2 2: (VARIANT2 :ARRAY_TYPE2);
36 00000000 2 3: (VARIANT3 :ARRAY TYPE3);
37 00000000 1 END;
42 00000000 1 VAR
43 00000000 1 COLOR :ARRAY TYPEO;
44 00000008 1 A,B :ARRAY TYPE1;
45 00000010 1 c :ARRAY TYPE2;
46 00000014 1 DAY :DAY_OF_WEEK;
47 00000015 1 E,F :ARRAY TYPE3;
48 00000026 1 NEXT_COLOR:SCALAR_TYPE;
49 00000027 1 a,Rr :REC_TYPE;
50 0000005C 1 J,K :BYTE;
51 0000005E 1 COUNT : INTEGER;
52 00000062 1 X DINT;
53 00000064 1 Y :PTR;
54 00000068 1
1 $PAGES$

55 00000068

Figure 3-2. Listing of Example Pascal Program

High Level Software Analyzer
Getting Started

60 00000000 1 PROCEDURE INITHEAP(START,LENGTH:INTEGER);EXTERNAL;

65 00000000 1 PROCEDURE PROC1 (VAR FPARM1:INTEGER; FPARM2:INTEGER);

76 00000000 2 PROCEDURE RECURSIVE_PROC(VAR RP1:INTEGER; RP2:INTEGER;

77 00000000 3 VAR RP3:INTEGER; RP4:INTEGER; VAR RP5:INTEGER;
78 00000000 3 RP6:INTEGER; VAR PTR:REC_TYPE_PTR);

91 00000004 3 BEGIN (* RECURSIVE _PROC ENTRY *)

113 00000074 3 RECURSIVE_PROC (RP1,RP2,RP3,RP4,RP5,RP6,PTR);

125 0000015C 3 END; (* RECURSIVE_PROC EXIT *)
128 00000164 2 BEGIN (* PROC1 ENTRY *)

138 000001A6 2 RECURSIVE_PROC (FPARM1, FPARM1, FPARM2, FPARM2, D, D,
139 00000000 2 REC_PTR".NEXT_REC);

143 00000204 2 END; (* PROCT EXIT *)

146 00000000 1 PROCEDURE PROCZ2 (A:INTEGER);

153 00000000 2 PROCEDURE NESTED PROC (PARM:INTEGER);
154 0000020C
155 0000020C 3 BEGIN (* NESTED_PROC *)

157 00000210 3 END; (* NESTED_PROC *)

159 00000218 2 BEGIN (* PROCZ2 ENTRY *)
160 00000218 2 NESTED_PROC (A);
161 00000224 2 END; (* PROCZ2 EXIT *)

183 0000023C 1 BEGIN (* MAIN PROGRAM ENTRY *)

223 00000300 1 PROC1 (COUNT,COUNT+2);
224 00000312 1 PROC2 (COUNT+2);

235 00000390 1 END. (* MAIN PROGRAM EXIT *)

Figure 3-2. Listing of Example Pascal Program (Cont’d)

Defining A Default Path (Optional)

The next step in making a measurement with the software analyzer is defining the default path.
The default path may be a module within a file or a file itself. The default path is used by the soft-
ware analyzer when a command requires a path definition, but none is included in the command
statement itself. For this measurement example, the default path is defined as the file MYFILE
using the command:

setup default path MYFILE

Therefore, for any commands being executed that do not include a file specification, the software
analyzer will look for the defined parameters in the default path file MYFILE.

3-12

High Level Software Analyzer
Getting Started

Specifying The Acquisition Depth (Optional)

The acquisition depth is user-definable with a default value of 256 states. An acquisition depth of
up to 8192 states may be specified. For this measurement example, an acquisition depth of 100
states is specified using the following command:

setup depth 100

When a measurement is executed, the software analyzer will acquire and store 100 acquisition
states in the trace file. For the trace modules measurement, there is a two-to-one correspondence
between acquired states and displayed lines in the trace listing.

Setting Up The Trace Specification

The last step remaining before executing a trace measurement is setting up the trace specification.
Entering the command

setup trace modules all (RETURN

will cause the software analyzer to be configured to trace all modules in the default path file
MYFILE. Had we wished to trace modules in a file other than the default path, we could have by
adding the file parameter followed by the file name to the serup command. We have now set up
the measurement and the complete setup display is shown in figure 3-3.

64330 Software Analyzer: Slot 8 with em68010 Emulator: Slot 9

TRACE MODULES

module file
all MYFILE : JOHNG

DEFAULT_PATH
file MYFILE:JOHNG

ABSOLUTE_FILE
file MYFILE:JOHNG

RUN_AT EXECUTION_ FROM
transfer_address

ACQUISITION DEPTH

100
STATUS: M68010--Running in monitor 9:20
run setup db check display modify show execute ---ETC---

Figure 3-3. Software Analyzer Setup Display

3-13

High Level Software Analyzer
Getting Started

Interpreting The Trace Listing

Pressing the execute softkey followed by causes the software analyzer to initiate the trace
modules measurement and start execution of the user program. After the specified 100 states
have been acquired, the measurement stops, and the acquired data is processed and displayed on
the screen. The trace modules listing is shown in figure 3-4.

The symbol field contains the names of the modules traced. In this example, all modules are
Pascal procedures. The software analyzer looks up the module name in the compiler symbol file
corresponding to the traced address value in the data record and displays that symbol in the first
display field. In the status field, the analyzer display shows whether the traced address is the
entry point to the module or the exit point from the module. To display the source field, the soft-
ware analyzer looks up the source file line number contained in the assembler symbol file and ex-
tracts that line from the source file for display. The number "12" displayed in the status line indi-
cates that the current trace line (displayed in inverse video in the center of the display) corresponds
to acquisition state 12.

Looking at the program listing in figure 3-2, we see that the main program begins at line 183. The
first module traced is PROCT, being called at line 223. The procedure INITHEAP defined at line 60
is a library function and is not included in the compiler symbol file for file MYFILE. Execution of
PROC1 begins at line 128 whereas the line number displayed in the listing is 223, the line from
which PROC1 was called. The called address of a module is considered the entry paint.

The second line in the trace listing shows RECURSIVE_PROC being called at line 138. Note that
RECURSIVE_PROC is indented one column, indicating that it is called from within PROCH1.
Nesting of modules are indicated by indentation. We see successive calls to RECURSIVE_PROC,
each indented one column from the other, followed by successive exits from the module. This in-
dicates that RECURSIVE_PROC is a recursive routine. This is verified by the program listing in
figure 3-2. After execution of RECURSIVE_PROC, the program exits PROC1 and the main
program then calls PROC2. PROC2, in turn, calls NESTED_PROC.

In this manner, the software analyzer provides an overview of program activity that enables you to
quickly determine whether the program is executing modules in the sequence intended or, if not,
in which module the program is in error. In the later case, the user can now use other software
analyzer measurements to isolate the error more precisely.

SAVING THE CONFIGURATION

If you wish to retrieve the measurement setup for use at a later time, you need to save it in a con-
figuration file. In this way you can begin to build a library of configurations and save a great deal
of time in future measurement sessions. Pressing the configure and save in softkeys in the se-
quence shown, typing in CONFIG1 and pressing the key will save the present configura-
tion in a file named CONFIG1.

configuration save_in CONFIG1

This allows you to change your configuration (or end the session) with the assurance that you can
retrieve your current configuration at a later time, if desired.

This completes the introduction to the software analyzer. You have seen how to load and execute
a program with the emulation system and how to perform a simple measurement. For more
specific and detailed measurements, refer to the information contained in the following chapters.

3-14

High Level Software Analyzer
Getting Started

NOTE

In the measurement display examples given in this manual, the center
line is always shown underscored. On your 64000 station, the center line
is displayed in inverse video.

64330 Software Analyzer: Slot 8

with em68010 Emulator: Slot 9

Symbol Stat Source
PROC1 entry 223 PROC1 (COUNT,COUNT+2);
RECURSIVE_PROC entry 138 RECURSIVE_PROC (FPARM1, FPARM1, FPARMZ,
RECURSIVE_PROC entry 113 RECURSIVE_PROC (RP1,RP2,RP3,RP4,RP5,RP6,PTR);
RECURSIVE_PROC entry 113 RECURSIVE_PROC (RP1,RP2,RP3,RP4,RP5,RP6,PTR);
RECURSIVE_PROC entry 113 RECURSIVE_PROC (RP1,RP2,RP3,RP4,RP5,RP6&,PTR);
RECURSIVE_PROC exit
RECURSIVE PROC exit
RECURSIVE_PROC exit
RECURSIVE_PROC exit
PROC1 exit
PROC?2 entry 224 PROC2 (COUNT+2);
NESTED_PROC entry 160 NESTED_PROC (A);
NESTED_PROC exit
PROC2 exit
STATUS: Awaiting command 12 10:45
<STATE #> display copy show end

Figure 3-4. Trace Modules Measurement Display

3-15

High Level Software Analyzer
Getting Started

RECOMMENDED PROGRAMMING STYLE

The following programming style suggestions are recommended to achieve the best results from
your analysis session.

1. Put only one statement on each line, especially when variables are used in more than one
statement. The analyzer cannot determine which access has been made and only the first one

may be displayed.

2. Break up compound statements, such as "IF <exp> THEN <stmt> ELSE <stmt>" to at least one
line for each of the three parts.

3. Put comments on all "END" text to indicate to which structure it belongs. e.g. "END; /*FOR
count LOOP™*/"

4. Use BEGIN/END pairs on separate lines to mark all control structures and statements. This is
redundant information in terms of compiler semantics and produces no additional code, but it
clarifies the source display in the measurement analysis.

5. Put subroutine calls with all parameters on one line when possible.

3-16

Chapter 4

BUILDING DATABASE FILES

INTRODUCTION

The software analyzer has a high level of interaction with the HP 64000 compilers. This chapter
describes the symbolic interface between the analyzer and compiler, and how the analyzer
database is built when a program is compiled and linked. It also describes how to verify that the
database file is correct. A list of compiler directives and the implications of their use with the soft-
ware analyzer is also discussed.

SYMBOLIC INTERFACE

The software analyzer provides the capability for the user who has developed programs using the
HP 64000 Logic Development System compilers, assemblers, and linker to specify measurements
in terms of the symbols used in the programs. The compilers, assemblers and linker produce
symbol tables that provide the analyzer with the information necessary to determine the physical
addresses associated with the user’'s symbols.

The software analyzer accommodates both statically stored symbols (global variables and the
names of software modules such as programs, functions, and procedures) and dynamically stored
symbols (local variables, VAR parameters, and value parameters). The analyzer also allows you to
reference source statement line numbers. The different symbol storage classifications and data
types are explained in detail in chapter 11.

COMP_DB FILES

The basis of the software analyzer measurements are the comp_db (compiler database) files. The
comp_db files allow the software analyzer to decode symbols into addresses and the addresses
back into symbols. The comp_db files provide information on the symbol types (used for display
purposes) and ownership of symbols by functions, procedures, or files.

Comp_db files can be generated in two ways,; (1) by compiling the source file with option
comp _sym and linking with option comp _db, or (2) by using the generate database utility. Due to
the time required to build the comp__db files, it is suggested that you keep only a small working set
of these files.

Since the linker creates a comp_db file for each comp_sym (compiler symbol) file it finds in the list
of files being linked, old comp sym files that are not being used should be purged. For each
comp_sym file purged, the corresponding comp_db file should also be purged so that the soft-
ware analyzer will not use a file that is not up-to-date. Conversely, when you make changes to
files which are being tested and fail to either compile with the comp sym option or link with the
comp db option, then unpredictable results can occur in the software analyzer measurements.
The software analyzer has a database_check command that allows you to verify that all comp_db
files are up-to-date. The database check command is described later in this chapter.

4-1

High Level Software Analyzer
Building Database Files

BUILDING THE DATABASE FILE

The procedure for building the symbol database required by the software analyzer is described in
the following paragraphs. The procedure is illustrated graphically in figure 4-1.

source ~(COMPILER)
_

FILE

options comp_sym

asmb_sym| [comp_sym reloc
FILE FILE FILE

SOFTWARE
ANALYZER

comp_db
FILE /| LINKER)
| options comp_db)

link_sym absolute
FILE FILE

Figure 4-1. Software Analyzer Symbolic Interface

4-2

High Level Software Analyzer
Building Database Files

Compiling Files

All files that you wish to debug must be compiled with the comp__sym option which specifies the
saving of the compiler symbol file. The command is:

compile <filename> options .. comp sym

The "..." located between options and comp__sym signifies that other options may be specified in
addition to the comp sym option. However, the comp sym option must be the last in the list of

options.

COMPILER SYMBOL FILE. A compiler symbol file is generated for each file compiled on the HP
64000 system. The compiler symbol file includes the following information; the processor for
which the file was compiled, the language the file was written in, the names, addresses, and data
sizes for modules, and the names, types, sizes and locations of variables unique to each module.
The compiler symbol file is not automatically saved after each compilation. The comp sym option
must be specified at compilation time which causes the compiler symbol file to be saved, making it
accessible to the software analyzer.

ASSEMBLER SYMBOL FILE. An asmb_sym (assembler symbol) file is created for every file com-
piled unless the nocode option is included in the compile command. The contents of the
asmb_sym file for a compiled file include local symbol names and relocatable or absolute address-
es for those local symbols. Also, the addresses for line numbers are recorded here. In order for
the analyzer to execute correctly, the asmb_sym file must be created for each file to be analyzed.

NOTE

DO NOT compile the file to be analyzed with the option nocode. This will
suppress the creation of an assembly symbol file, a file required for
proper operation of the software analyzer.

Linking Files
Next, the compiled files must be linked. The command to use is:
link .. options .. comp db
The link_sym file is created during the linking process and contains information about all files in-

cluded in the link command. Included are global symbol names and their relocated addresses,
source names and their relocated addresses, and a list of memory space used by the linked files.

NOTE

If local stack variables and static variables are to be traced in the same
measurement, the stack should be assigned to a lower memory location
than the static variables. Do not link the emulation monitor
(Mon68010:HP) between the stack and static variables. This can result in
erroneous data being displayed in the trace listings.

4-3

High Level Software Analyzer
Building Database Files

A data base file is created at link time, when options comp _db is specified, for each file that was
compiled with the comp sym option. The comp_db must be the last specified option in the link
command, as comp _sym was in the compile command.

NOTE

When Pascal and C files are linked within the same absolute file, the
linker will execute faster if the Pascal and C files are linked in separate
blocks and not intermixed with each other.

Using The Generate Database (gen_db) Command.

The generate _database Command allows you to generate comp_sym and comp_db type files
without the overhead of recompilation and relinking. These files are optionally generated by the
HP 64000 hosted compilers and linkers. The generate database utility provides the capability to
generate the comp_sym and comp_db type files for source files developed in HP supported host-
ed environments other than the HP 64000 environment. The generate database utility provides
the necessary link for performing high level software analysis in an HP 64000 development station
of programs developed in the hosted development environment.

The utility can also be used to generate comp_db files for source files developed on an HP 64000
development station, but not compiled with the comp_sym option or linked with the comp_db op-
tion. This command first executes pass 1 of the compiler to generate the required comp_sym file.
It then uses the asmb_sym, comp sym, and link_sym files to generate the comp_db file. If a
valid comp_sym file exists, you can specify that only the comp_db file be generated. The com-
mand then uses the existing comp_sym file, eliminating compiler pass 1 execution.

Specifying the keyword comp sym allows you to perform syntax checking on a source program
without the overhead of compiling the program.

NOTE

You do not need a compiler on your HP 64000 system to generate com-
p_sym and comp_db files using the generate database command.

REQUIRED FILES. The generate database utility requires the following files to be downloaded
from the hosted development environment:

Pascal and C source files
Absolute files (.X)
Asmb_sym files (.A)
Link_sym files (.L)

4-4

High Level Software Analyzer
Building Database Files

A high level debug files transfer utility is available on the hosted system. This utility transfers all
files required by the generate database utility. See the Files Transfer Utilities section of the Hosted
Development System User’s Guide for detailed information on the transfer utility.

GENERATE_DATABASE COMMAND SYNTAX. The command syntax for the generate database
command is shown in figure 4-2.

(generate_database)~ <FILE> —(using <FILE> <RETURN>

Figure 4-2. Generate_Database Command Syntax Diagram

GENERATE_DATABASE COMMAND PARAMETERS. The following parameters can be specified in
the generate_database command.

comp_db comp db specifies that only a comp_db file be generated.
comp_sym comp _sym specifies that only a comp_sym file be generated.
<FILE> <FILE> must be the name of a C or Pascal source file for which the

comp_sym and/or comp db files are to be generated. In order for the
database generator to distinguish between the two, C source files must have
"C" for their first line and Pascal files must have "PASCAL" for their first line.
using <FILE> using <FILE> specifies the link_sym file (generated by a previous link) to be
used in generating the comp_db file.
GENERATE_DATABASE COMMAND EXAMPLES. The following command examples illustrate
how to use the generate database command.
generate_database C_SOURCE using C_LINKSYM
The files C_SOURCE:comp_sym and C_SOURCE:comp_db are generated. C_SOURCE is
a C source file and C LINKSYM is a link_sym file generated by a previous link of
C_SOURCE with other relocatables.
generate _database comp sym PASCAL SOURCE
The file PASCAL_SOURCE:comp_sym is generated.
generate _database comp db PASCAL SOURCE using PASCAL LINKSYM

The file PASCAL_SOURCE:comp_db is generated.

4.5

High Level Software Analyzer
Building Database Files

VERIFYING DATABASE FILES

For proper operation of the software analyzer, the database information provided by the com-
piler and linker must be current for the files being analyzed. The database check command is
provided to systematically verify whether the database files associated with the current absolute
file are up-to-date. The following paragraphs describe how database files are verified. The
database _check command syntax is shown in figure 4-3.

The normal sequence of creating files is described in the previous section of this chapter,
Building the Database Files. This process generates the following files in the order listed: 1) the
comp_sym file, 2) the reloc file, and 3) the asmb_sym file. The reloc files are then linked with
option comp db specified. This generates, in order, the link_sym, absolute, and comp_db
files.

During the normal operation of a link, the link_sym file will always be dated before or with the
same date and time as the absolute file. The database check function compares the modify
date of the current absolute file with the modify date of the link_sym file associated with that
absolute file. If the absolute file’'s modify date and time is earlier than that of the link_sym file,
a database error exists. This error will be displayed and the database check will be terminated.

Since a relocatable file may be linked to any number of absolute files, the comp_db file for
each file compiled with options comp_sym will contain the file name of the last absolute file it
was linked to. With this information, the database check performs the following operations:

Obtains the names of all linked files from the link_sym file.

Determines if the named files have comp_db files (i.e., if they were compiled with option
comp sym and linked with option comp _db).

Verifies that comp_db files were generated for the current absolute file by comparing the
name of the currently loaded absolute file with the absolute file name contained in the com-

p_db files.

Verifies that all files were generated in the proper sequence by comparing the modify date
and time for each file type.

Reports any discrepancies in the database.

(dotobose_check

<RETURN>

listfile display

4-6

printer

<FILE>

Figure 4-3. Database_check Command Syntax Diagram

High Level Software Analyzer
Building Database Files
The following example commands illustrate use of the database_check command:
database _check listfile display

database check listfile printer
database _check listfile DATABASE_CHECK append

NOTE

To ensure that each file has the correct modify date, always keep your
system clock set to the current date and time. This is done using the
date&time utility command at the system monitor level of softkeys.

USING COMPILER DIRECTIVES

There are certain compiler directives that must be in the ON state for the Software Analyzer to
operate correctly and others that may cause unexpected results.

AMNESIA

When the AMNESIA option is OFF there may be accesses to variables that could be missed be-
cause they are stored in registers.

ASMB_SYM

ASMB SYM must be ON.

FIXED_PARAMETERS (C only)

When FIXED PARAMETERS is OFF the software analyzer may display a parameter as being
accessed when it was not. This occurs when the calling routine does not pass all the parameters
to the called routine.

LINE__NUMBERS

LINE_NUMBERS must be ON.
OPTIMIZE

If the OPTIMIZE option is ON some accesses to variables may be missed because they are
stored in registers.

4-7

High Level Software Analyzer
Building Database Files

FILES WRITTEN IN ASSEMBLY LANGUAGE

If a module is written in assembly language and you wish to trace a variable within the assembly
language module, the variable must be declared as external in some other Pascal or C file. When
the assembly language variable is not declared external, its address will not appear in the data
base of any file and the analyzer will not be able to find the variable when a measurement is

specified.

4-8

Chapter 5

CONTROLLING THE EMULATOR

INTRODUCTION

The software analyzer uses the emulation subsystem as an execution environment. The software
analyzer includes a subset of the emulator commands to enable you to control emulation from
within the analyzer. These commands are break, load, reset, and run. These are the four basic
commands needed to control a user’s program running in emulation memory. The incorporation
of the emulator commands simplify the interface between you and the system by providing the
means for you to control the emulator without exiting the software analyzer.

EMULATION INTERFACE

Emulation Configuration File

When you invoke the software analyzer with the sw_anly command, you must specify a file name.
This file name can be the name of a emulation command file or the name of a software analyzer
configuration file. When both file types exist with the same file name, the software analyzer con-
figuration file is used.

The emulation command file is the command file that was used in emulation to configure the
emulator for a particular application. This file is generated during the emulation session and con-
tains your answers to a series of questions ending with "Command file name?". This command file
name is used to create a file of type "emul _com" (emulation command). The software analyzer
uses this command file to determine which emulator and internal analyzer is used for software
analysis. This configuration file is also used to determine the state of the emulator. When an
emulation command file is specified, the analyzer is always reconfigured to the specified emulator.
The current software analyzer configuration is lost.

The software analyzer configuration file is created with the configuration save in command
during a software analysis session. The software analyzer uses the configuration file to determine
which emulator and internal analyzer is used for software analysis. The configuration file also con-
figures the software analyzer for a measurement.

When no file is specified, the software analyzer prompts you with the question "Emulation com-
mand file?". you must specify a file before the system will allow you access to the software
analyzer.

Loading And Running The Program
In order to use the software analyzer for debugging a program, the program must be loaded to the
emulation system and running. This can be done within the software analyzer (refer to the descrip-

tions of the emulation commands and their syntax in this chapter). After the emulation
configuration is complete, load the absolute file into emulation memory using the lead command,

5-1

High Level Software Analyzer
Controlling the Emulator

If the address range into which a program is to be loaded resides entirely in internal emulation
memory, the processor remains in the reset state. If any portion of the program resides in memory
which has been mapped as external user memory, the processor is released from the reset state.
After loading all portions of the file which are to reside in emulation memory, a handshake is per-
formed to determine if the processor is executing in the emulation monitor program and, if not, a
break is performed. When the processor is in the monitor, the user memory portion of the
program is loaded. This sequence can be performed manually by using the options of the /oad
command which specify the portion of memory to be loaded.

NOTE

When using the HP 64243,HP 64244, or HP 64245 emulators, the ab-
solute file will be loaded to the last address space specified in the
emulator, i.e. supervisor or user program space, supervisor or user data
space, etc.

NOTE

When the emulator is running in the monitor, the processor must be reset
before an absolute file containing the emulation monitor program can be
loaded.

Once the program has been loaded, release the processor from the reset state with the run com-
mand. If the command is issued as the single keyword run, the processor will use the start-up vec-
tor or routine to start execution in the emulation monitor. The status line will display "Running in
monitor Monitor initialized" indicating that the HP 64000/monitor handshake is being performed.
From this state you can issue the run command to begin execution of the program. When the
command run is given, program execution begins at the transfer address specified in the source
program. Thereafter, run will cause execution to begin at the address contained in the program

counter (PC) register.

Selecting The Emulation Analysis Mode (HP 64243,64244,64245 Emulators only)

The emulator analysis mode must be set to bus_cycle data in order to use the software analyzer.
From within the emulation subsystem, execute the command meodify analysis mode to
bus _cycle data. If the emulation analysis mode is not set to bus_cycle_data, the error message
"Incorrect analysis bus mode for this analyzer" is displayed on the status line when you attempt to
access the software analyzer.

COMMUNICATION BETWEEN THE SOFTWARE
ANALYZER AND EMULATION

The software analyzer communicates with the emulation processor by transferring data to and
from emulation memory. Data transfer is accomplished through the memory controller board into
the emulation memory boards. The memory controller contains a hardware mapper that is

5-2

High Level Software Analyzer
Controlling the Emulator

programmed by the emulation command file to map the emulation processor address space into
emulation or user memory spaces designated as RAM and/or ROM memory.

The software analyzer controls the emulation processor reset and break functions directly through
the emulation control board. Refer to your HP 64000 System Emulation/Analysis manual for a
more detailed description of how the HP 64000 host processor controls emulation.

The software analyzer and the emulator communicate the status of the emulator hardware to each
other. Whenever the emulation hardware is modified by either the software analyzer or the
emulator, the hardware change is reflected when the other module is entered. Note that the status
of the hardware is communicated to the other module only if the modules are exited using the end
softkey.

USING THE EMULATION MONITOR

The software analyzer makes extensive use of the emulation monitor. The emulation monitor must
be linked with your program and must reside in emulation memory. The monitor supplied with the
emulation software is designed to work with the software analyzer. If you have modified this
monitor, it is possible that the software analyzer will not function properly. To verify that a
modified maonitor will function properly, perform the following procedure: ‘

1. Access the emulator and load the absolute file containing the modified monitor.
2. Set the emulator such that it is running in the emulation monitor.

3. Verify that the display registers, modify memory, and display memory commands execute
correctly.

4. Insert software breakpoints in your code using the modify software breakpoints command.

5. Verify that program execution is transferred to the monitor and that the software break mes-
sage is displayed at the correct address when a software breakpoint is executed.

6. Verify that the emulator’s single step feature functions correctly.

All of the preceding features and functions must execute correctly to ensure proper operation of
the software analyzer. If any of the above steps fail, modify your emulation monitor until the
problem is corrected.

EMULATION COMMANDS

The following paragraphs will familiarize you with the emulation commands available in the soft-
ware analyzer. A description of the command is given, including the syntax and examples of their
use.

5-3

High Level Software Analyzer
Controlling the Emulator

Break Command

The break command causes the processor to be diverted from execution of the user program to
the emulation monitor. A break is defined as a transition from execution of a user’'s program to the

Emulation Monitor.

SYNTAX

(break } - <RETURN>

DEFAULT VALUE

none

EXAMPLE

break

PARAMETERS

none

5-4

High Level Software Analyzer
Controlling the Emulator

Load Command

The load command transfers absolute code from the HP 64000 system disc into user RAM or
emulation memory. The destination of the absolute code is determined by the memory configura-
tion map which was set up during emulation configuration and the address specified during link-
ing. When using the HP 64243, HP 64244 or HP 64245 emulators, the absolute file will be loaded
to the last address space specified in the emulator, i.e., supervisor or user program space, super-
visor or user data space, etc.

NOTE

When the emulator is running in the monitor program and a lead com-
mand is given which reloads the monitor, the results are unpredictable. If
a reload of the monitor is required, first put the emulator in the reset
mode.

SYNTAX

(load) & <FILE> <RETURN>

emulation_memory

user_memory

DEFAULT VALUE

all memory

EXAMPLES

load TESTP
load emulation _memory TESTP
load user _memory TESTP

PARAMETERS

emulation_memory emulation _memory specifies that absolute code is to be loaded into
emulation memory. The destination of the absolute code is determined
by the address specified during linking.

<FILE> <FILE> is the identifier of the absolute file to be loaded from the HP

64000 system memory into user RAM or emulation memory The syntax
requirements for <FILE> are discussed in Appendix B.

5-5

High Level Software Analyzer
Controlling the Emulator

user_memory user _memory specifies that the absolute program be loaded into user
RAM in the target system. In the context of the load command,
user_memory refers to target system memory.

5-6

High Level Software Analyzer
Controlling the Emulator

Reset Command

The reset command suspends target system operation and reestablishes initial operating para-
meters, such as reloading control registers. The reset signal is latched when active and is released

by the run command.

SYNTAX

(reset) <RETURN>

DEFAULT VALUE

none

EXAMPLE

reset

PARAMETERS

none

5-7

High Level Software Analyzer
Controlling the Emulator

Run Command

When the processor is in a reset state, run causes the reset to be released, and if a from address
is specified, the processor is directed to that address. If the processor is running in the emulation
monitor, the run command causes the processor to exit into the user program. The program can
either be run from (1) the transfer address of the user’'s program, (2) a specified address, (3) a
specified line humber in the source code, (4) from the entry point of a specified module, (5) from
the address currently stored in the processor’s program counter, or (6) from a global symbol.

A "run at_execution" command causes the user’'s program to start running after the execute soft-
key has been pressed. This enables the trace measurement to be started before beginning
program execution, ensuring that the analyzer can trace all code executed starting with the "run

from" location.

SYNTAX
run <RETURN>
I—CGt_execution}j
address }—| <ADDRESS> 4

<ADDRESS> [

| <LINE>
L(}ng}——-<F|l_E>~-f

<SYMBOL>
1—<ﬁm>——-<HLE>FJr

\—< transfer_address) -

DEFAULT VALUE

If no from option is specified with the run command, the emulator will begin program execu-
tion at the current address specified by the processor’s program counter.

5-8

EXAMPLES

run

High Level Software Analyzer
Controlling the Emulator

run at_execution from transfer _address
run from 173 file TESTP

run from PROC2

run at _execution from address 356AH
run from address 3490H + OFFH

PARAMETERS

<ADDRESS>

<FILE>

<LINE>

<SYMBOL>

<OFFSET>

<ADDRESS> represents an address within the absolute file loaded into
user or emulation memory from which the processor will begin program
execution. The syntax allows specification of a positive or negative off-
set from the absolute address.

<FILE> represents the name of the source file containing the address,
line, or symbol from which the processor is to begin program execution.

<LINE> allows you to specify a line number in the source code as the
starting point for program execution. Program execution begins at the
absolute address containing the first executable instruction associated
with the source line.

<SYMBOL> allows you to specify program execution to run from a
specified symbol. If a file name is specified with <SYMBOL>, the
analyzer assumes that the symbol is a module in the specified file. If no
file is specified with <SYMBOL>, the analyzer first looks for the address
of a global symbol in the link_sym file associated with the currently
loaded absolute file. If no global symbol is found there, the analyzer
then searches for a module in the current default file.

<OFFSET> allows you to specify an positive or negative offset from the
specified <ADDRESS>.

5-9

High Level Software Analyzer
Controlling the Emulator

NOTES

5-10

Chapter 6

MAKING TRACE MEASUREMENTS

INTRODUCTION

This chapter describes the software analyzer trace measurement modes. These modes are (1)
trace data_flow , (2) trace modules, (3) trace statements, and (4) trace variables. The uses of these
modes are discussed in chapter 1 and syntax diagrams for each operating mode are given in this
chapter and in appendix A, figures A-4 through A-7. This chapter provides general information
concerning the operating modes, discusses the softkeys used to initiate each operating mode, and
details the options for each mode.

If you have any difficulties or problems when using the software analyzer, see appendix E,
Resolving Measurement Problems, for possible solutions.

GENERAL

Before setting up any of the measurement configurations discussed in this chapter, the program to
be analyzed must be compiled using the comp sym option and linked with the emulation monitor
program and appropriate library routines using the comp__db option. The emulator must also be
properly configured with the linked absolute file loaded in emulation memory. These procedures
are described in chapter 3, Getting Started.

Before setting up a measurement, you may define a default path and set up the acquisition depth.
The default path may be a source file name or a source file name along with a procedure or func-
tion name within the source file. The default path is used when a path is needed for a measure-
ment and none has been included in the measurement command itself. Using the default path to
specify a particular area of software activity can simplify the setup commands used during a
measurement session since the path parameters in some commands can then be omitted.

The acquisition memory depth can be set to a value from 1 to 8192 states. The word "state" as
used here and throughout this manual refers to logical states with respect to the analyzer and not
physical states in the time domain. In general one byte of memory data corresponds to one logical
state. The analyzer acquires these states by reading the target processor’'s memory or by captur-
ing bus cycles. Each bus cycle that is acquired corresponds to two states. This will be true even
if the bus cycle contained only one byte of valid data. Invalid data bytes are counted but otherwise
ignored by the analyzer.

THE TRACE FILE

Each measurement that produces a display outputs raw trace data to a file known as a trace file.
The trace file allows user-selectable trace depth for the measurements and provides the ability to
review old measurements. A unique name for the trace file is created for each HP-IB address and
analysis slot number used to generate a trace. The trace file name is

6-1

High Level Software Analyzer
Making Trace Measurements

Swtrace<analysis slot No.><HP-IB address>:<userid>:trace
where <analysis slot No.> is the card cage slot occupied by the HP 64302A Analyzer
<HP-IB address> is the address of the development station on the system bus
and <userid> is the currently selected userid

Example: Swtrace76:USER1:trace

The file has two basic parts. The first part is the symbol header which contains information iden-
tifying what type of measurement was done as well as database information about the symbols
used in the measurement. When a variable’s database information is written to the symbol header,
information describing all data types defined within a variables declaration is written to the file.

There is a maximum size limit for this symbol data. If the requested variable or variables exceed
this size, an error is displayed. Only symbols made up of very large numbers of different data
types can cause this to occur. Reducing the number of symbols traced will help reduce this sym-
bol data to below the maximum limit. Tracing a subset of the variable will have no effect since all
symbol data is required to extract any subelement.

The second part of the file is the measurement data itself. When a display or execute command is
given to the analyzer, the last measurement’s Swtrace file is deleted and a new Switrace file
created. If you want to save a measurement, you must do it before the next display or execute

command is given.

MAKING SEQUENTIAL TRACE MEASUREMENTS

At the completion of a measurement, the software analyzer causes the user program to break and
the emulator to enter the emulation monitor. When a run or run at_execution command is given,
the user program processor data is restored and program execution is resumed from the point that
the break occurred. This feature enables sequential measurements to be made. Executing the
commands run at_execution and execute causes the software analyzer to begin acquiring trace
data in the current measurement at the point of execution where the previous measurement ended.
This allows you to sequentially view segments of program activity in increments defined by the
value set up in the acquisition _depth specification. The run_at _execution command remains en-
abled until another run command is executed.

MEASUREMENT CONSIDERATIONS

When a trace variables measurement with local variables is executed and the program is running in
the monitor, the following condition applies:

If run at_execution from current program counter is specified with the program currently run-
ning in the monitor and the next instruction to be executed is within the procedure where ac-
tivity to be traced will occur, tracing will begin immediately upon exit from the monitor.

If the preceding condition is not met, i.e., the next program counter is outside the procedure to be
traced or a run at_execution from an address has been specified, no data will be captured until the
entry point of the procedure being traced has been detected. In this case, the software analyzer
will display the message "exit captured without matching entry information” in the trace list.

6-2

High Level Software Analyzer
Making Trace Measurements

The trace statements and trace data_flow measurements will always continue from where program
execution left off, regardless of the measurement setup.

NOTE

The software analyzer does not distinguish between supervisor and user
modes. If these modes are used to map multiple physical addresses to
one logical address, the software analyzer will correlate all physical ad-
dresses with the last program loaded. This will probably result in er-
roneous data being displayed in the measurement display.

MEASUREMENT SYSTEM INTERFACE

The software analyzer cannot participate in an intermodule bus measurement. If an intermodule
bus measurement is in progress with other analyzers, the IMB measurement must be halted before

the software analyzer can be used.

The Internal Analyzer (HP 64302A) can be used for assembly level debugging in conjunction with
the software analyzer for high level software debugging. This allows you to take an assembly level
trace in emulation, break the processor at a specific point, invoke the software analyzer and make
a high level measurement from where the assembly level left off.

SIMULATED 1/0

The software analyzer does not support simulated 1/O. When a simulated 1/O request is made
from the target processor while a measurement is in process, the measurement will be terminated
and the message "Simulated 1/O Requested” will be displayed. The target processor will be run-
ning in the simulated 1/O routine waiting for a response from the host processor. To complete the
1/O operation, end out of the software analyzer and enter the emulator. This will cause the 1/O
operation to complete and the program will continue running.

TRACE DATA FLOW MEASUREMENT

The trace data_flow measurement traces the values of specified variables or parameters on entry
to and exit from selected procedures or functions in a program. The traced variables must be ac-
cessible at the procedure entry point, exit point, or both. Static variables can always be accessed.
Local variables can be accessed only if the variable (1) belongs to a parent procedure, (2) is a
pass-by-reference parameter to the specified procedure, or (3) is a pass-by-value parameter and
measurement is with procedure entry.

If the variable is local to the associated module, it can never be accessed since none of a module’s
local variables are created until after module entry and they are removed from the stack before
module exit. Value parameters are active only at procedure entries, and reference parameters are
always active with respect to their procedure. If a value parameter is requested on exit to its pro-
cedure, a warning message will be displayed. and no values of that parameter will be displayed.

When tracing recursive modules, the analyzer will stop capturing data if the number of recursive
levels exceeds 128. A message is displayed in the trace list indicating that the recursion limit has

6-3

High Level Soltware Analyzer
Making Trace Measurements

been exceeded. Once the program returns to the 128th level of recursion, the capture of data is
resumed. The count of recursive levels is relative to the start of the trace. If the trace was started
in the middle of recursion (i.e., some recursive entries have occurred before the trace was started),
it is possible for the analyzer to miss data. The analyzer will trace only recursive levels for which it
finds entries. If the analyzer finds more exits than entries, a message is displayed in the trace list
indicating that exits without matching entries have been detected.

Command Syntax

Up to ten symbols may be specified in the setup trace data_flow command in combinations of
procedures (functions) and variables. For example, the setup command could call for nine vari-
ables to be traced in one procedure, or for four variables to be traced in each of two procedures.
The command syntax for setting up the trace data_flow measurement is shown in figure 6-1.

C setup H trace H data_flow

<MODULE>
= <FILE> on_entry
on_exit
[.]
Q@ 7 | P—variable |
—J

- -0
proc <PROC> file <FILE>
\ () -

o/ D

[{ <RETURN> I

Figure 6-1. Setup Trace Data_Flow Syntax Diagram

6-4

Parameters

High Level Software Analyzer
Making Trace Measurements

The following paragraphs define the parameters used in the setup trace data_flow command.

c_variable

on_entry

on_ exit

<FILE>

<INDEX>

<MODULE>

<PROC>

c_variable may be any valid C variable.

c_variable
ll

on_entry specifies that data be traced only on entry to the specified
module(s). The default value is to trace data on both entry to and exit
from a module.

on_exit specifies that data be traced only on exit from the specified
module(s).

<FILE> is an optional parameter that refers to the source file containing
the specified <MODULE>, <VAR>, or <PROC> called out in the command
statement. If the <MODULE>, <VAR>, or <PROC> is in the defined
default path, the <FILE> parameter may be omitted from the command
statement.

Represents an index value (integer or scalar value) specifying a com-
ponent of an array.

<MODULE-> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure or a function within a specified file. in C, a module
can be the name of a function within a specified file. The trace data_flow
measurement traces the specified variables on entry to and/or exit from
the <MODULE> as specified in the command line. A given module can
only be specified once.

<PROC> is an optional parameter that refers to a procedure or function
in which <VAR> is declared. If <PROC> is defined in the setup
default _path command, it may be omitted in the setup trace data_flow
command. If <PROC> is not specified in either the default path or the
setup trace data_flow command, the analyzer assumes that <VAR> is a
global variable defined at the main program level.

6-5

High Level Software Analyzer
Making Trace Measurements

p_variable p_variable may be any valid Pascal variable.

p_variable —s{ <vaR> |- -

<VAR> <VAR> represents the name of a variable or parameter to be traced on
entry to and/or exit from a <MODULE>. <VAR> can be any valid Pascal
or C variable expression.

Examples

The following command examples illustrate how to use the setup trace data_flow command to
define measurements.

setup trace data_flow PROC2 (COUNT , D proc PROC1 ,
PTR proc PROC2)
setup trace data_ flow PROC1 (SN proc PROC1 , SV proc PROC1)
PROC2 (SNN proc PROC2 , SVN proc PROC2 , COUNT)
setup trace data_flow PROCT1 (AR[1,2,3], RC.E1.EZ)
setup trace data_flow PROC1 (A”.B".C*)
setup trace data_flow proc2 (*a->b->c)

The example below shows several lines of a program, a setup trace data_flow command and a
portion of the resulting trace list.
SOURCE PROGRAM LINES.

101 PROCEDURE PROC4(A:INTEGER);

122 PROCEDURE PROC10(XV:INT; VAR XN:INT, YV:PTR, VAR YN;PTR)

SETUP MEASUREMENT COMMAND.

setup trace data_flow PROC10 (XV proc PROC10, XN proc PROC10,
YV proc PROC10, YN proc PROC10, A[RED]) PROC4 (X)

MEASUREMENT DISPLAY. The measurement display resulting from the preceding setup specifica-
tion is shown in figure 6-2. The trace list shows that PROC4 is called from line 172 and PROC10
is called from line 190. The values of the variables are shown immediately following the entry or
exit of the corresponding module. Note that when PROC10 is exited, XV and YV are not active

and are not displayed.

6-6

High Level Software Analyzer
Making Trace Measurements

Note also that YV and YN are pointers and their values are the values of the pointers themselves,
not the objects of the pointers. The software analyzer will trace the object of a pointer. If the vari-
able YV~ (*yv in C) had been specified, the value of the object pointed to by pointer YV would have
been displayed in the trace list.

In the C programming language, array parameters without an explicitly defined size will not be
traced as a whole.

Source lines displayed by trace data flow measurements are not affected by instruction prefetch
mechanisms. Source lines are not shown for exits.

64330 Software Analyzer: Slot 8 with em68010 Emulator: Slot 9

Symbol Value Stat Source
PROC4 entry 172 PROC4(COUNT+2);
X 100
PROC4 exit
X 100
PROC10 entry 190 PROCI10(X,X,Y,Y);
XV 10
XN 10
YV 00000300CH
YN 00000300CH
A[RED] RED
PROC10 exit
XN "
YN 00000300CH
A [RED] RED
PROC4 entry 172 PROC4(COUNT+2);
Status: Awaiting command 28 14:49
<STATE #> display copy show end

Figure 6-2. Trace Data_Flow Measurement Display

High Level Software Analyzer
Making Trace Measurements

TRACE MODULES MEASUREMENT

The trace modules measurement provides an overview of a program’s control flow at the module
level. This measurement provides the capability to isolate a problem to a specific module and to
provide a history of the module calls leading up to the problem. The entry and exit points of
procedures and functions are traced and displayed with indentation used to indicate the level of
nesting of the traced modules. The measurement can be set up to measure all modules or selec-
ted modules within a file or group of files. A total of 128 modules can be traced.

When tracing recursive modules, each successive level of recursion is indented in the trace list.
For large numbers of recursion levels, this may result in the data being shifted off the right side of
the trace list display. This is indicated by an asterisk (*) displayed in the last display column.
Recursive modules are indented relative to the outermost recursion level traced.

If a module name is longer than the symbol field width or the recursion level is deep, an asterisk is
displayed in the last column of the symbol field. To display the entire name of a module, increase
the symbol field width using the display command.

Command Syntax

The command syntax for setting up the trace modules measurement is shown in figure 6-3.

@tuthroce modules

all J J <RETURN>
<MODULE> L(file)— <FILE>

)
/

Figure 6-3. Setup Trace Modules Syntax Diagram

Parameters
The following definitions describe the parameters used in the setup trace modules command.
all all specifies that all modules in the designated file or default path be
traced. A maximum of 128 modules may be traced.

<FILE> <FILE> is an optional parameter that refers to the source file containing
the specified modules called out in the command statement. If the

High Level Software Analyzer
Making Trace Measurements

<MODULE> is in the defined default path, the <FILE> parameter may be
omitted from the command statement.

<MODULE> <MODULE> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure or a function within a specified file. In C, a module
can be the name of a function within a specified file. The trace modules
measurement traces the entry and exit points of the specified modules.

Examples

The following command examples illustrate how to use the setup trace modules command to
define measurements.

setup trace modules all

setup trace modules all file BSORT ,all file TESTP ,
PROC1 , PROC2

setup trace modules PROC1 , PROC4 , PROC5

The following example shows a setup trace modules command and a portion of the resulting trace
list.

SETUP MEASUREMENT COMMAND.

setup trace modules all file Util, all file Fact

MEASUREMENT DISPLAY. The trace list in figure 6-4 shows the sequence of entries and exits for
all modules in source files Util and Fact. In this example procedure factorial is recursive. The
recursive descent can be seen in the succession of "entry"s in the Status field and also by the in-
dentation of the procedure name in the Symbol field. The recursive ascent is shown in a similar

manner.

Source lines displayed by trace modules measurements are not affected by instruction prefetch
mechanisms. Source lines are not shown for exits.

6-9

High Level Software Analyzer
Making Trace Measurements

64330 Software Analyzer: Slot 7 Wwith em68010 Emulator: Slot 8

Symbol Stat Source
swap_elements_a entry 105 swap_elements_at (large_index, curr_index)
swap_elements_a exit
sort exit
factorial entry 133 factorial (value);
factorial entry 121 else { descend_factor = value * factorial (valu
factorial entry 121 else { descend factor = value * factorial (valu
factorial entry 121 else { descend_factor = value * factorial (valu
factorial entry 121 else { descend factor = value * factorial (valu
factorial entry 121 else { descend_factor = value * factorial (valu
factorial entry 121 else { descend factor = value * factorial (valu
factorial entry 121 else { descend_factor = value * factorial (valu
factorial entry 121 else { descend factor = value * factorial (valu
factorial exit
factorial exit
factorial exit
Status: Awaiting command 14 14:49
<STATE #> display copy show end

Figure 6-4. Trace Modules Measurement Display

6-10

High Level Software Analyzer
Making Trace Measurements

TRACE STATEMENTS MEASUREMENT

The trace statements measurement gives you a detailed view of a small section of code. Once a
problem is isolated to a particular module, the trace statements measurement allows a close in-
spection of this code to determine precisely the problems. The measurement traces the execution
of source language statements and the value of all variables in each statement in a defined source
program line range or a specified module. Each source statement is displayed with its line number
and the value of any variables referenced in the source statement.

When tracing recursive modules, the analyzer will stop capturing data if the number of recursive
levels exceeds 128. A message is displayed in the trace list indicating that the recursion limit has
been exceeded. Once the program returns to the 128th level of recursion, the capture of data is
resumed. The count of recursive levels is relative to the start of the trace. If the trace was started
in the middle of recursion (i.e., some recursive entries have occurred before the trace was started),
it is possible for the analyzer to miss data. The analyzer will trace only recursive levels for which it
finds entries. If the analyzer finds more exits than entries, a message is displayed in the trace list
indicating that exits without matching entries have been detected.

Some processors prefetch instructions prior to their execution. Prefetches have the following ef-
fects on the trace statements measurements:

1. Accesses to variables by instructions executed immediately prior to the address range being
traced will appear as accesses occurring within the address range.

2. Accesses to variables by the last instructions executed within the address range being traced
may not appear.

3. The symbol and value fields in the display may be offset from their corresponding source
lines.

The trace depth of a trace statements measurement may be greater than the depth specified in the
setup menu. This due to the fact that the analyzer captures data in blocks of 512 bytes when ex-

ecuting a trace statements measurement.

The error message "break while in range, possible missing data" will occasionally appear on
screen. This happens whenever the analyzer executes a break and the last opcode detected is in
the range being traced. Data may be missing if the analyzer did not break on completion of an
opcode. Data acquisition will continue at the start of the next opcode.

The trace statements measurement only displays variables accessed by the statements being
traced. Any accesses caused by procedures or functions outside of the traced range are not

shown. For example, if a variable is modified by a compiler library, that variable will not appear in
the trace statements trace list.

Command Syntax

The command syntax for setting up the trace statements measurement is shown in figure 6-5.

High Level Software Analyzer
Making Trace Measurements

(setup)—{troce)—a(stotementsh

<LINE> to <LINE> <RETURN>
| <MODULE> | file) <FILE>
Figure 6-5. Setup Trace Statements Syntax Diagram
Parameters

The following definitions describe the parameters used in the setup trace statements command.

<FILE>

<LINE>

<MODULE>

Examples

<FILE> is an optional parameter that refers to the source file containing
the specified <MODULE> or line range called out in the command state-
ment. If the <MODULE> or line range is in the defined default path, the
<FILE> parameter may be omitted from the command statement.

<LINE> represents the line number of a Pascal or C statement in the
source program. The two line numbers specified are the boundaries of
the trace measurement. The first line is inclusive and is traced. The
second line (following the to in the measurement specification) is nonin-
clusive and is not traced. If the specified <LINE> contains only com-
ments (no executable code), the analyzer will associate the line number
with the first line containing executable code following it. Any comment
lines preceding the first line of executable code in a procedure or func-
tion are not recognized by the software analyzer. All lines in the
specified line range must be contained within a single module. This
module may be a procedure or function, or the main program block.

<MODULE> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure or a function within a specified file. In C, a module
can be the name of a function within a specified file. The trace state-
ments measurement traces source level statements and all variables
referenced in the source statements contains in the specified
<MODULE>.

The following command examples illustrate how to use the setup trace statements command to

define measurements.

setup trace statements PROC2 file TESTP
setup trace statements 74 to 102

6-12

High Level Software Analyzer
Making Trace Measurements

The following example shows several lines of a Pascal program, a sefup trace statements
command and a portion of the resulting trace list.

SOURCE PROGRAM LINES.

88 P2:=DN; (* DYNAMIC CALLBYNAME™*)
89 Y:=2;

90 A [ORANGE] :=A[RED];

91 Cl-11:=J+K;

92 PROC13;

93 (*Comment lines are not traced*)
94 X:=PROC1T(COUNT,MAX);

95 Q.REAL NUMBER:=2.0E22;

96 Q.SETT :=[RED,WHITE,BLUE];
97 J :=Q.N;

98 Q.VARIANT1:=A;

SETUP MEASUREMENT COMMAND.

setup trace statements 88 to 95 proc SETUP file MAIN

MEASUREMENT DISPLAY. Figure 6-6 is a trace statements measurement listing showing the
source lines that were executed and and the values of the variables accessed or modified in the
source lines. "Break for new stack information" indicates that the analyzer has started tracing a
different occurrence (activation) of the procedure SETUP.

Some variables accessed in a source line are not traced. This includes variables that are main-
tained in registers rather than in memory. This may occur if the compiler AMNESIA option is
off. In the C programming language, array parameters without an explicitly defined size are not
traced. The value of a pointer variable is traced but the object of the pointer is not traced.

Symbols may not line up with the source line that accessed them. This is seen in the sample dis-
play in figure 6-6. Executed source lines may not be displayed if the number of program fetches
for the source line is less than the depth of the prefetch queue. The preceding limitations to the
measurement apply only when the analyzer is used with a target processor which has an instruc-
tion prefetch mechanism and an emulator that does not dequeue the prefetch.

In a prefetch environment, the source line may be off by plus or minus one line or variables may
be displayed with the wrong source line.

6-13

High Level Software Analyzer
Making Trace Measurements

64330 Software Analyzer: Slot 8 with emé8010 Emulator: Slot 9
Source Symbo L Value Stat
Break for new stack information
88 P2:=DN; (* DYNAMIC CALLBYNAME* DN 3 read
89 Y:=2; p2 3 write
90 A[ORANGE]:=A[REDI]; Y 2.00000EQ0 write
A[RED] RED read
91 C(-11:=J+K; A [ORANGE] RED write
J 0 read
K 5 read
92 PROC13; Cl-11 5 write
94 X:=PROCT(COUNT,MAX); MAX 88664100 read
Break for new stack information
88 P2:=DN; (* DYNAMIC CALLBYNAME* DN 3 read
89 Y:=2; P2 3 write
90 A[ORANGE]:=A[RED]; Y 2.00000E0 write
A[RED] RED read
<STATE #> display copy show end

Figure 6-6. Trace Statements Measurement Display

TRACE VARIABLES MEASUREMENT

The trace variables measurement traces specified variables and parameters and displays their
values, along with the source statement that accessed them. The variables are displayed in their
declared data type format, i.e., as integers, reals, boolean values, characters, etc. The variable
must be uniquely defined as to the module where it is declared. If the variable is defined outside a
module, i.e., a program variable in Pascal or an outer level variable in C, then only the file name is
required. When multiple variables map to the same memory location, only the first variable
specified in the setup command is displayed. A maximum of 10 variables may be traced.

When tracing local variables defined within recursive modules, the analyzer will stop capturing data
if the number of recursive levels exceeds 128. A message is displayed in the trace list indicating
that the recursion limit has been exceeded. Once the program returns to the 128th level of recur-
sion, the capture of data is resumed. The count of recursive levels is relative to the start of the
trace. If the trace was started in the middle of recursion (i.e., some recursive entries have occurred
before the trace was started), it is possible for the analyzer to miss data. The analyzer will trace
only recursive levels for which it finds entries. If the analyzer finds more exits than entries, a mes-
sage is displayed in the trace list indicating that exits without matching entries have been detected.

High Level Software Analyzer
Making Trace Measurements

It is more efficient to trace variables that are adjacent to each other in memory because the
analyzer has only one range resource. The further apart in memory the variables are, the greater
the time required to execute a trace. If the range of currently active variables includes variables
within the monitor, the analyzer will halt the trace with an error message. The trace can be
resumed with a smaller range specified without any loss of data. The trace must be halted since a
break issued while in the monitor will be ignored. The monitor’s variables are located where the
monitor’s static data has been linked to and on the stack below the currently executing procedure.

NOTE

The stack must be located at a lower address in memory than the static
variables with the monitor not located between the two for static and lo-
cal variables to be traced in a single measurement.

Command Syntax

The command syntax for setting up the trace variables measurement is shown in figure 6-7.

(setup —o(trace H variables

variable R
, J
J |
proc)— <PROC> L(ﬁle)——— <FILE>
N J/
>
B <RETURN>

Figure 6-7. Setup Trace Variables Syntax Diagram

6-15

High Level Software Analyzer
Making Trace Measurements

Parameters

The following paragraphs define the parameters used in the setup trace variables command.

<FILE>

<INDEX>

<PROC>

read

<VAR>

variable

write

Examples

<FILE> is an optional parameter that refers to the source file containing
the specified <VAR> or <PROC> called out in the command statement.
If the <VAR> or <PROC> is in the defined default path, the <FILE> pa-
rameter may be omitted from the command statement.

Represents an index value (integer or scalar value) specifying a com-
ponent of an array.

<PROC> is an optional parameter that refers to a procedure or function
in which <VAR> is declared. If <PROC> is defined in the setup
default _path command, it may be omitted in the setup trace variables
command. If <PROC> is not specified in either the default path or the
setup trace variables command, the analyzer assumes that <VAR> is a
variable defined at the main program level.

read specifies that only memory read accesses to the specified variable
be traced. The default condition is to trace both memory read and
memory write accesses to the specified variable.

<VAR> represents the name of a variable or parameter to be traced.
<VAR> can be any valid Pascal or C variable expression. Pointer vari-
ables cannot be traced in the trace variables measurement mode.

Variable may be any valid C or Pascal variable other than pointer types.
Pointer variables cannot be traced with the trace variables measurement.

variable

write specifies that only memory write accesses to the variable be traced.

The following command examples illustrate how to use the setup trace variables command to

define measurements.

setup trace variables pred_result proc proc2
setup trace variables COUNT , SNN proc PROC2 ,
Q.FLAG file TESTP

The following example shows several lines of program, a setup trace variables command and a

6-16

portion of the resulting trace list.

SOURCE PROGRAM LINES.

166
167
168
169
170
171
172
173
174
175
176
177
178
179

pred result.enumerated = green
check = check + pred result.arr[0]
check = check - result.arr(0];
check = check + pred-result.arr[1];
check = check - result.arr(1];

pred result.enumerated = blue

ulé(y;

pred_result.ch = 'a';

check = check + pred result.arr[0];
check = check - result.arr[0];
check = check + pred result.arrl[1];
check = check - result.arr([1];
pred_result.ch = 'a';

SETUP MEASUREMENT COMMAND.

setup trace variables pred_result

High Level Software Analyzer
Making Trace Measurements

MEASUREMENT DISPLAY. Figure 6-8 is a trace variables measurement display. The trace list
shows all accesses to the variable pred result where pred result is a structure. The value of the
variable and the source line are shown.

The read and subsequent write of pred_result.u8 at source line 28 is due to the read then write na-
ture of the instruction used by the target processor to clear a memory location.

pred result.s16 is set to hexadecimal value -1BFE on line 39 in the source field but is displayed as
decimal value -7166 in the value field. The default base for numeric data types is decimal.

6-17

High Level Software Analyzer
Making Trace Measurements

64330 Software Analyzer: Slot 8 with em68010 Emulator: Slot 9

symbol Value stat source

pred_result.enumera* red write 17 pred result.enumerated = red;

pred result.arr[0] 0 read 158 check = check + pred result.arr([0]
pred_result.u8 50 read 28 pred result.u8 = 0;

pred result.u8 0 write 28 pred result.u8 = 0;
pred_result.arr[0] 0 read 162 check = check + pred_result.arr[0]
pred result.s16 -7166 write 39 pred_result.s16 = -1BFEH;
pred_result.enumera* green write 166 pred result.enumerated = green;
pred result.arr[0] 0 read 167 check = check + pred result.arr (0]
pred_result.arr([1] 0 read 169 check = check + pred_result.arr[1]
pred result.enumera* blue write 171 pred result.enumerated = blue;
pred result.ch "A" write 174 pred result.ch = 'A’';
pred_result.arr[0] 0 read 175 check = check + pred_result.arr[0]
pred result.arr[1] 0 read 177 check = check + pred result.arr[1]
pred_result.ch "a" write 179 pred_result.ch = 'a';
pred_result.s16 3700 write 85 pred result.s16 = 3700;
Status: Awaiting command 102 _ 14:49
<STATE #> display copy show end

Figure 6-8.

Trace Variables Measurement Display

Chapter 7

USING INTERACTIVE COMMANDS
FOR PROGRAM DEBUGGING

INTRODUCTION

The software analyzer has three commands that allow you to interact with the emulator without ex-
iting the analyzer. These commands are setup breakpoints, display variables, and modify
variables.

The setup breakpoints command provides you with the capability to define software breakpoints.
This enables you to command the emulation system to perform a "break on execution." The
breakpoint may be specified as (1) any valid address of an opcode, (2) any Pascal or C source line
containing executable code, or (3) the entry or exit point of a module (procedure or function). Up
to 16 software breakpoints can be defined with the setup break points command.

The display variables command displays the current value of a variable in emulation memory. The
variable is specified in the same notation that it is specified in the source file. The modify vari-
ables command allows a variable to be modified manually by the user. The variable can be set to
a specified value in integer format. The user program must be halted and the emulator running in
the emulation monitor before the display or modify commands can be executed. Detailed
descriptions of how to use these commands are given in this chapter.

If you have any difficulties or problems when using the software analyzer, see appendix E,
Resolving Measurement Problems, for possible solutions.

7-1

High Level Software Analyzer
Using Interactive Commands for Program Debugging

BREAKPOINTS

The breakpoints feature of the software analyzer provides a method of positioning to the desired
location in a users program to begin execution of a trace measurement. By using a series of
breakpoints you can locate a position in the program under test to any combination of sequential
address events. The breakpoint may be specified as (1) any valid address of an opcode, (2) any
Pascal or C source line containing executable code, or (3) the entry and/or exit point of a module
(procedure or function). The breakpoints are inserted at execution of a measurement and removed
at measurement completion or halt. The instruction at the breakpoint address is always executed.

Command Syntax

The command syntax for setting up breakpoints is shown in figure 7-1.

e~ breakpoints J > <RETURN>

.
F;(oddress | <ADDRESS> |

¥—-| <LINE> }
‘—I <MODULE> l

on_exit

\. @ J

Figure 7-1. Setup Breakpoints Syntax Diagram

Parameters

The following definitions describe the parameters used in the setup breakpoints command.

<ADDRESS> <ADDRESS> represents the address in the loaded absolute file at which a
software breakpoint will be set.

clear clear causes all defined software breakpoints to be removed from the
setup specification.

7-2

<FILE>

<LINE>

<MODULE>

on_entry

on_exit

Examples

High Level Software Analyzer
Using Interactive Commands for Program Debugging

<FILE> is an optional parameter that refers to the source file containing
the specified <MODULE> or line called out in the command statement. If
the file containing the <MODULE> or line is the defined default path, the
<FILE> parameter may be omitted from the command statement.

<LINE> represents the line number of a Pascal or C statement in the
source program. |If the specified <LINE> contains only comments (no
executable code), the analyzer will associate the line number with the first
line containing executable code following it. Any comment lines preced-
ing the first line of executable code in a procedure or function are not
recognized by the software analyzer.

<MODULE> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure or a function within a specified file. In C, a module
can be the name of a function within a specified file.

on_entry defines that the breakpoint be set at the entry point to the
specified module only. The default condition is to set the breakpoint at
both the entry and exit points of the specified module.

on_exit defines that the breakpoint be set at the exit point from the
specified module.

The following command examples illustrate how to use the setup breakpoints command to define

measurements.

setup breakpoints PROC2 on_entry

setup breakpoints 102

setup breakpoints address 3068H + 20H

setup breakpoints 94 or BSORT on_exit or address 304BH

7-3

High Level Software Analyzer
Using Interactive Commands for Program Debugging

DISPLAY COMMAND

The display command displays the current value of a variable in emulation memory. The variable
is displayed in the same notation that they were declared in the Pascal or C source file, i.e., in their
declared data type format, i.e., as integers, reals, boolean values, characters, etc. The variable
must be uniquely defined as to the module where it is declared. If the variable is defined outside
of a module, i.e., a program variable in Pascal or outer level variable in C, then only the file name
is required. The user program must be halted and the emulator running in the emulation monitor
before the display command can be executed. The variable to be displayed must be accessible
based upon the next address the program will execute. Local variables are accessible only if (1)
the next program counter is within the procedure that defined the variable or (2), the variable
belongs to a parent procedure of the current executing procedure.

Command Syntax

The command syntax for the display command is shown in figure 7-2.

(display) p_variable (N\
+ c_variable
e <RETURN>
proc }—{ <PROC> L(fne <FILE>

Figure 7-2. Display Variables Syntax Diagram

Parameters

The following paragraphs define the parameters used in the display variables command.

c_variable c_variable may be any valid C variable in the following expression format.

C_variable “ <VAR>

7-4

<FILE>

<INDEX>

<PROC>

p_variable

<VAR>

Examples

High Level Software Analyzer
Using Interactive Commands for Program Debugging

<FILE> is an optional parameter that refers to the source file containing
the specified <VAR> and <PROC> called out in the command statement.
If the <VAR> and <PROC> is in the defined default path, the <FILE> pa-
rameter may be omitted from the command statement.

Represents an index value (integer or scalar value) specifying a com-
ponent of an array.

<PROC> is an optional parameter that refers to a procedure or function
in which <VAR> is declared. If <PROC> is defined in the setup
default _path command, it may be omitted in the display command. If
<PROC> is not specified in either the default path or the display com-
mand, the analyzer assumes that <VAR> is a variable defined at the main

program level.

p_variable may be any valid Pascal variable in the following expression
format.

p_variable r

<VAR>
H

<VAR> represents the name of a variable or parameter to be displayed.
<VAR> can be any valid Pascal or C variable expression.

The following command examples illustrate how to use the display command to display the value

of variables.

display SNN” proc PROC2 file NT1
display Q.FLAG proc CONTROLT
display A[1] file TESTP

display A*.B".C"
display ™a->b->c

7-5

High Level Software Analyzer
Using Interactive Commands for Program Debugging

MODIFY COMMAND

The modify command allows you to modify the current value of variables in emulation memory.
Values must be specified in binary, octal, decimal, or hexadecimal notation. The variable must be
uniquely defined as to the module where it is declared. If the variable is defined outside of a
module, i.e., a program variable in Pascal or an outer variable in C, then only the file name is
required. The user program must be halted and the emulator running in the emulation monitor
before the modify command can be executed. The maximum variable size that can be modified
with a single command is 32 bits. Larger variables must have their subelements modified in-
dividually with multiple commands. The variable must be accessible based upon the next address
the program will execute. Local variables are accessible only if (1) the next program counter is
within the procedure that defined the variable or (2), the variable belongs to a parent procedure of
the current executing procedure.

Command Syntax

The command syntax for the medify command is shown in figure 7-3.

c_ variable

proc) <PROC> JL{fue)— <FILE> J

<VALUE> <RETURN>

A

Figure 7-3. Modify Variables Syntax Diagram

7-6

PARAMETERS

High Level Software Analyzer
Using Interactive Commands for Program Debugging

The following paragraphs define the parameters used in the modify command.

C_variable

<FILE>

<INDEX>

<PROC>

p_variable

<VALUE>

<VAR>

c_variable may be any valid C variable in the following expression format.

c_variable

- >

<FILE> is an optional parameter that refers to the source file containing
the specified <VAR> and <PROC> called out in the command statement.
If the <VAR> and <PROC> is in the defined default path, the <FILE> pa-
rameter may be omitted from the command statement.

Represents an index value (integer or scalar value) specifying a com-
ponent of an array.

<PROC> is an optional parameter that refers to a procedure or function
in which <VAR> is declared. If <PROC> is defined in the setup
default _path command, it may be omitted in the display command. If
<PROC> is not specified in either the default path or the modify com-
mand, the analyzer assumes that <VAR> is a variable defined at the main

program level.

p_variable may be any valid Pascal variable in the following expression
format.

<VALUE> represents the value that the specified variable is to be chang-
ed to. <VALUE> must be specified as an integer value.

<VAR> represents the name of a variable or parameter to be modified.
<VAR> can be any valid Pascal or C variable expression.

High Level Software Analyzer
Using Interactive Commands for Program Debugging

Examples

The following command examples illustrate how to use the modify command to change the value
of program variables.

modify Q.CHAR1 proc LTRSORT =41H
modify NEXTINT = 0124H

modify A".B~.C" = 15

modify *a->b->c = 15

7-8

Chapter 8

SELECTING AND FORMATTING
THE MEASUREMENT DISPLAY

INTRODUCTION

This chapter describes how to select the data displayed in the measurement display and how to
format the information to increase its usability. The measurement is automatically displayed in a
trace list format upon completion of a measurement. If you have returned from the measurement
display to the setup display, the measurement display may be recalled from the setup display by
pressing the show softkey (show measurement command) followed by (RETURN). Four commands
are available when the trace list is displayed; (1) display, (2) copy, (3) show, and (4) end. This
chapter describes the display, copy, and show commands. The end command is described in
chapter 10, Using Support Commands.

VIEWING THE MEASUREMENT DATA

The (ROLL UP), (ROLL DOWN), (NEXT PAGE}, and keys allow the user to scroll through the
trace listing line-by-line or in page increments. The left and right cursor (&) and (=)) keys used
with the key allow the user to move the display left or right on the screen. Pressing
with no command left justifies the display. In addition, the user can enter an integer value
(>= 0) that specifies the state in the trace data buffer to be centered on the display (highlighted in
inverse video). If the state is not the first state in a display line, the software analyzer will align the
display to the first state in the line.

DISPLAY FIELDS

The measurement display can consist of up to six different information fields; source, source path,
symbol, symbol path, value, and status. The following paragraphs describe the information fields.

Source Field

The source field is made up of source file statements corresponding to line numbers contained in
the asmb_sym file created when the file was compiled. The software analyzer compares address-
es in the trace record with addresses associated with symbols in the analyzer database. If the
analyzer detects an address corresponding to a line number symbol in the database, it extracts the
source statement with its line number from the source file and stores it in the display buffer for
display in the trace list. If a source line is not found, "????" is displayed in place of the line num-
ber and a message explaining the reason is displayed in the source field.

8-1

High Level Software Analyzer
Selecting and Formatting the Measurement Display

Source Path Field

The source_path field contains the file name and userid of the source file from which the source
statement for the current display line was extracted.

Symbol Field

The symbol field contains the symbols traced by the software analyzer. In the trace modules
measurement, the symbols are the names of the modules traced. In the trace data_ flow
measurement, the symbol field consists of a module name with the symbol field of subsequent
lines containing the names of the parameters and variables being traced on entry to or exit from
the named module. In the trace variables and trace statements measurements, the symbol field

consists of variable and parameter names.

Symbol Path Field

The symbol path field shows the path in which the symbol is defined. For modules, the symbol
path contains a file name and userid. For variables and parameters, the symbol path may be a
module name and file name with userid, or a file name and userid, depending upon the level at
which the symbol is defined.

Value Field

The value field contains the values of the variables and parameters traced in the trace data flow,
trace statements, or trace variables measurements. This field is not valid in the trace modules
measurement and cannot be displayed in the trace list display for that measurement. The value
field shows the data values in the data type notation specified in the Pascal or C source program,
i.e., integers are displayed as integer values, real numbers as mantissa and exponent portions,
boolean values as true or false, etc.

Status Field

The status field indicates whether the traced operation is an entry or exit from a module if the
traced symbol is a module name, or the traced operation is a read from or write to memory if the

traced symbol is a variable or parameter.

INTERPRETING THE DISPLAY

The following examples describe conventions and features of a trace list when displayed or copied
to a list file. The examples were generated using the measurement command trace variables B
file EXAMPLE. Most of the discussion is applicable to displays generated by any software
analyzer measurement. Part of the list file generated when file EXAMPLE was compiled is shown
in figure 8-1. The TYPE and VAR definitions in the program must be understood before the
sample displays can be understood.

8-2

High Level Software Analyzer
Selecting and Formatting the Measurement Display

10 00000000

1 TYPE
11 00000000 1 SHAPE =(LINE, TRIANGLE, SQUARE,PENTAGON , HEXAGON,
12 00000000 1 HETAGON, OCTAGON, CIRCLE);
13 00000000 1 POLYGON =TRIANGLE..OCTAGON;

14 00000000 1 SHAPE_SET =SET OF SHAPE;
15 00000000 1 POLY ARRAY =ARRAY [-2..0] OF POLYGON;

*%kRYARNING 77 508
16 00000000 1 PTR =EC;

17 00000000 1 REC =RECORD

18 00000000 2 FOO :PTR;

19 00000000 2 TIME :REAL;

20 00000000 2 FIGURE1 :SHAPE;

21 00000000 2 FIGURE2 :SHAPE;

22 00000000 2 P :POLY_ARRAY;
23 00000000 2 CHAR1 :CHAR;

24 00000000 2 FLAG :BOOLEAN;

25 00000000 2 SETT :SHAPE_SET;
26 00000000 2 N :UNSIGNED 16;
27 00000000 2 CASE M :SIGNED_16 OF
28 00000000 2 2:(VARIANT2 :SIGNED 16);
29 00000000 2 1:(VARIANT1 :SIGNED 8);
30 00000000 1 END;

31 00000000 1

32 00000000 1 VAR

33 00000000 1 A,B :REC;

508: Warning: field or entry alignment; record or array comparisons may not work

Figure 8-1. Compiler Listing File For Program EXAMPLE

Current Line
In the trace list shown in figure 8-2, the underscored line in the center of the display is the current

line. The number "912" on the status line is the first acquisition state for the current line. The
number of states required for one line of display is variable.

8-3

High Level Software Analyzer
Selecting and Formatting the Measurement Display

64330 Software Analyzer: Slot 8 with em68010 Emulator: Slot 9

Symbol Value Stat Source Source path
B.FOO 000012EF6H write 53 B:=A; NT2:TEST
B.TIME 1.20000E-4 write 53 B:=A; NT2:TEST
B.FIGURE1 CIRCLE write 53 B:=A; NT2:TEST
B.FIGUREZ2 PENTAGON write 53 B:=A; NT2:TEST
B.P[-2] SQUARE write 53 B:=A; NT2:TEST
B.P[-11] TRIANGLE write 53 B:=A; NT2:TEST
B.P[0] OCTAGON write 53 B:=A; NT2:TEST
B.P[01H?] 72H write 53 B:=A; NT2:TEST
B.CHAR1 " write 53 B:=A; NT2:TEST
B.FLAG TRUE write 53 B:=A; NT2:TEST
B.SETT [LINE,SQUAR* write 53 B:=A; NT2:TEST
B.N 100 write 53 B:=A; NT2:TEST
B.M 1 write 53 B:=A; NT2:TEST
B.VARIANT1 0 write 53 B:=A; NT2:TEST
B.+0017H? O0H write 53 B:=A; NT2:TEST
Status: Awaiting command 912 _ 14:49
<STATE #> display copy show end

Figure 8-2. Sample Display Showing How Pad Bytes, Variant
Records, and Field Widths Are Displayed

Displaying Pad Bytes

Line 53 in source file EXAMPLE moves variable A in its entirety to variable B. The symbol field in
the eight line of the display contains a question mark ("?"). A question mark in the symbol field in-
dicates that a complete symbolic name does not exist for the value. The compiler warning in the
type definition of POLY_ARRAY indicates that the physical size of a variable of type POLY_ARRAY
is larger than the logical size. This is done to ensure that the subsequent field begins on an even
byte boundary. The result is a "hole" or "pad byte" in variable B which has no symbolic name.
The analyzer recognizes that the byte is physically part of array P but that an index of 1 is not
valid. A question mark will always be displayed when the analyzer traces a pad byte correspond-
ing to a "508" warning from the compiler.

Displaying Variant Records

The question mark in the 15th line is slightly different. In Pascal, a record is physically large
enough to accommodate its largest variant. In C, a structure is physically large enough to ac-
commodate its largest union. In this case, the record B must be large enough to accommodate
VARIANT2 which is two bytes long. Unless a specific variant is requested in the setup command,
the analyzer defaults to displaying a record with the first variant (C language) or the last variant
(Pascal language). The byte which is offset 17H bytes from the first byte of B is defined with
respect to VARIANT2 but not with respect to VARIANT1. The analyzer always displays undefined
bytes as +nnH?, where nn is a byte offset from the first byte of the record.

8-4

High Level Software Analyzer
Selecting and Formatting the Measurement Display

Field and Display Width

The "*" in the value field of the 11th line of the display indicates that the field is not large enough to
display the entire value of B.SETT. The size of the field may be increased by using the display
command to specify a larger width. The asterisk may appear as the last character in any field, in-
dicating that there is additional information that is not being displayed. The display may be refor-
matted with a greater width for the field containing the asterisk. The analyzer limits the total width
of the display to 132 characters. The screen is a 79 character window into this 132 character dis-
play. The window may be moved by using the SHIFT key with the left or right arrow.

lllegal Values

Figure 8-3 shows another display resulting from the trace variables B file EXAMPLE measurement.
Question marks in the value field generally indicate that the value of a symbol is illegal with respect
to the symbol type, i.e., it is out of range. The "07H?" in the seventh line is out of range because
the value 7 (CIRCLE) is not a legal value for a POLYGON. In the ninth line, "81H" is not a legal
ASCII character. In the 10th line, "OCH" is not a valid boolean value. The "OAH" in the 11th line
indicates that the bit for the 10th element of B.SETT was set but there is no 10th element in the
definition of the set (first element = element 0).

64330 Software Analyzer: Slot 8 with emb68010 Emulator: Slot 9

Symbol Value Stat Source Source path
B.FOO ?7772EF6H write 53 B:=A; NT2:TEST
B.TIME -Infinity write 53 B:=A; NT2:TEST
B.FIGURE1 CIRCLE write 53 B:=A; NT2:TEST
B.FIGURE2 PENTAGON write 53 B:=A; NT2:TEST
B.P[-2] SQUARE write 53 B:=A; NT2:TEST
B.P[-1] OCTAGON write 53 B:=A; NT2:TEST
B.P[0] 07H? write 53 B:=A; NT2:TEST
B.P[01H?] 72H write 53 B:=A; NT2:TEST
B.CHAR1 81H? write 53 B:=A; NT2:TEST
B.FLAG 0CH? write 53 B:=A; NT2:TEST
B.SETT [LINE,OAH?] write 53 B:=A; NT2:TEST
B.N 100 write 53 B:=A; NT2:TEST
B.M 2 write 53 B:=A; NT2:TEST
B.VARIANT1 0 write 53 B:=A; NT2:TEST
B.+0017H? 00H write 53 B:=A; NT2:TEST
Status: Awaiting command 912 _ 14:49
<STATE #> display copy show end

Figure 8-3. Example Display Showing lllegal Values, Special
Values, and Incomplete Access to Values.

Special Values

B.TIME in the second line of the display has a value of "-infinity". Real numbers may also have the
special values "+infinity" and "not a number".

High Level Software Analyzer
Selecting and Formatting the Measurement Display

Incomplete Access To Variables

The four question marks in the value of B.FOO indicate that the analyzer has seen an incomplete
access to the variable and has acquired only part of its value. In this example, the partial value is
due to the analyzer beginning data capture in the middle of the two bus cycles that wrote to
B.FOO. The asynchronous nature of the measurement resulted in the first write cycle not being

captured.

Partial values also occur when the executing code accesses one traced variable and then a second
traced variable without having accessed all of the first variable. A common example is when the
measurement is tracing two 32-bit integers where one is assigned to the other. If the code does
the assignment with word moves, partial values result from the second variable being written to
before all of the first variable is read. Similarly, partial values are common when tracing two struc-
tured variables where one is assigned to the other.

Errors may occur in trace variables measurements when partial values are displayed adjacent to a
complete value of the same value. The software analyzer groups bus cycles together into what it
considers to be one logical access. This grouping may be incorrect when a access is adjacent to
complete accesses. The user may alter the grouping by specifying a new integer position to be
shown on the center line of the display. The software analyzer uses this integer position as the ini-
tial condition in its grouping algorithm. This will alter the manner in which the bus cycles are

grouped.

DISPLAY COMMAND

The display command is used to specify the format of the information displayed in the trace list-
ing. This command allows the user to select which fields to display, the sequence in which the
fields are displayed, field width, and other parameters described below.

Command Syntax

The display command syntax is shown in figure 8-4.

Parameters

The following paragraphs describe the parameters used in the display command.

default default specifies that the trace list be displayed in the default format.
source source specifies that the source field is to be displayed in the trace list.
source_path source__path specifies that a field is to be displayed showing the source

file name that the source statement was extracted from.

status status specifies that the status field is to be displayed in the trace list.

8-6

Gy (
—(source — <WIDTH>

High Level Software Analyzer
Selecting and Formatting the Measurement Display

default — <RETURN>

N

{ then) d

symbol

symbol path

then

value

<WIDTH>

Examples

{ then J=
Figure 8-4. Display Command Syntax Diagram

symbol specifies that the symbol field is to be displayed in the trace list.

symbol _path specifies that a field is to be displayed showing the path in
which the symbol is defined. For modules, the symbol path contains a
file name. For variables and parameters, the symbol path may be a file
or a module and file, depending upon the level at which the symbol is
defined.

then is used as a delimiter to separate field definitions when more than
one field is specified in the display command line.

value specifies that the value field is to be displayed in the trace list. The
values are displayed in the notation of the data type declared in the
source program.

<WIDTH> is a prompt for the user to define the width of a displayed field
in columns. Width must be an integer value from zero to 132 columns.

The following examples illustrate how to use the display command to format the trace list display.

display default

display source 40 then symbol 10 then value
display symbol 10 then value 10 then source then source path

8-7

High Level Software Analyzer
Selecting and Formatting the Measurement Display

COPY COMMAND

The copy command is used to copy the current display or all or part of the measurement data
(trace list) to a listing file or to the system printer.

Command Syntax

The copy command syntax is shown in figure 8-5.

display

meosurement)

> <INTEGER> to
P
—— <FILE> <RETURN>
~ printer
Figure 8-5. Copy Command Syntax Diagram
Parameters
The following definitions describe the parameters used in the copy command.
append append specifies that the display or measurement being copied be ap-
pended to the end of the listing file.
display display specifies that an image of the current display be copied to the
specified file or system printer.
<FILE> <FILE> is a prompt for the user to enter the file name of the listing file
that the display or trace list is to be copied to.
measurement measurement specifies that the measurement trace list or specified por-

tion of the trace list be copied to the listing file or system printer.

8-8

High Level Software Analyzer
Selecting and Formatting the Measurement Display

printer printer specifies that the display or trace list be copied to the system
printer.
thru thru is used to specify which portion of the trace listing is to be copied.

thru end specifies the first line of the current display through the end of
the trace list. thru start specifies the start of the trace list through the
last line of the current display. <POSITION> specifies a record position in
the trace measurement buffer. The trace list from the record position to
the top or bottom of the current display will be copied, depending on
whether the specified record position occurs after or before the currently
displayed data. The minimum data that can be copied is the current

display.
Examples

The following examples illustrate how to use the copy command.
copy display to printer
copy measurement to TRACEZ2
copy measurement thru 50 ro TRACE1 append
copy measurement thru start to printer

When a copy command is executed, the acquisition state for each line of display or measurement
trace list is copied along with the line.

SHOW COMMAND

The show (show _setup) command is used to exit the measurement display mode and return to the
setup display.

Command Syntax

The syntax for the shiow command is shown in figure 8-6.

(show_setup> &= <RETURN>

Figure 8-6. Show Command Syntax Diagram

8-9

High Level Software Analyzer
Selecting and Formatting the Measurement Display

STATE NUMBER PROMPT

<STATE #> is a prompt for the user to enter an integer value from O to 9999 specifying the posi-
tion in the measurement buffer to be displayed and centered on the screen.

344

8-10

Chapter 9

CONFIGURING THE ANALYZER

INTRODUCTION

This chapter explains how to configure the software analyzer. The analyzer can be configured
manually each time it is used or it can be configured automatically. There are three methods that
you can use to load the analyzer configuration automatically when you first enter the analyzer: (1)
you can use the options continue feature to recall the measurement setup you used to perform the
last tests, (2) you can use any measurement setup that has been previously stored in a configura-
tion file, or (3) you can use a measurement system command file. Each of these methods are dis-
cussed in the following paragraphs.

NOTE

The software analyzer recomputes the addresses of symbols each time
the analyzer is configured from a configuration file. If any programs
referenced in a configuration file are changed such that symbol names
are modified or deleted, the configuration file may no longer be valid.
Errors will occur if symbols are no longer present or have been modified.

GETTING THE MEASUREMENT CONFIGURATION LAST USED

When you are running a measurement session and you press the end softkey the first time, the
analyzer will automatically store the measurement configuration presently in use. You are now at
the measurement system software level. You can enter the other analysis functions available at
this level if you wish. To return to the software analyzer softkey level, press the sw_anly softkey,

then the key.

Pressing the end softkey a second time brings you out of the measurement system level software
to the system monitor level software. Here you can use the system monitor level softkey functions
without disturbing the measurement setup you ended out of as long as you do not press the
opt_test softkey at the monitor level. You can reenter the software analyzer measurement ses-
sion with the last configuration used at any time by pressing the meas _sys and continue softkeys,
and then the key.

High Level Software Analyzer
Configuring the Analyzer

NOTE

If you do not include the options continue statement in your command,
your present measurement configuration will be purged.

The options continue function will not perform the function described
above after the key has been pressed twice, or after a power
down or power fail, or after running performance verification. You can
recover the configuration that was being used when you ended the last
time by loading file Sw_anly<HP-IB address>:HP.

If you have entered the same emulator used by the analyzer after ending
the analysis session and modified the emulation setup (i.e. loaded a new
file while in emulation), an attempt to reenter the software analyzer using
the options continue statement may fail.

GETTING A MEASUREMENT CONFIGURATION
FROM A CONFIGURATION FILE

The analyzer can store complete measurement configurations in disc memory so that you can
keep a library of test setups and measurement data on hand for your measurement needs. You
can then load a selected measurement configuration to suit your current need without having to
build a new configuration for each measurement session. If you have a configuration file that is
close to the configuration you need, you can load it and then modify it, saving time by eliminating
the requirement to enter some basic parameters. The following paragraphs describe the
procedures used to store and recover these measurement configurations. The syntax for saving or
loading a configuration is given in Appendix A.

Saving A Measurement Configuration

1. Set up any desired measurement configuration in your software analyzer. It is a good idea
to set up a good basic configuration that can be stored, then loaded and used as a building
block for other measurement configurations.

2. Press the configure and save in softkeys, then type in an A in answer to the <FILE>
softkey prompt. Now press the key. The analyzer will now save its present
measurement configuration in the trace file you have just named A. The file will be stored
under the current USERID.

3. Now you can change the setup any way you like. Your original measurement configuration
will still be saved exactly as you stored it in file A. You can use this procedure to make as
many configurations as you may require. These, in turn, can also be stored in configuration
files for access at a later time.

If you used the write protected option when you saved your configuration and you ever want to
purge that file, you must return to the system monitor level software to accomplish the purge. To
accomplish this press the end softkey, then the key (in that sequence) two times. This will
return you to the system monitor level software. You can now purge the unwanted file.

9-2

NOTE

High Level Software Analyzer
Configuring the Analyzer

When you reenter the software analyzer, you can recover the the
measurement data acquired in the last measurement made before ending

the previous measurement session. The data

is stored in file

Swtrace<analysis slot #><HP-IB address>:<userid>:itrace. During a
measurement session this is the data file for the current measurement. A
show measurement command will always display the contents of this file.

Loading A Measurement Configuration

If you are starting a session (or are at the measurement system monitor level) and want to load a
configuration you have previously stored in a file, proceed as follows: press the sw_anly softkey,
type in the name of the configuration file you want to use, and press the key. You will
gain access to the software analyzer and it will automatically search the disc and load the con-
figuration you stored in the file you requested.

If you are operating the software analyzer in a measurement session and you want to load a con-
figuration you have stored in a file without ending out of the analyzer, proceed as follows: press
the configure and load _from softkeys, type in the name of the file you want to use, and press the
key. This will cause the analyzer to purge the present measurement setup and load the
configuration from the file you requested.

GETTING A MEASUREMENT CONFIGURATION

FROM A COMMAND FILE

PARMS &CMD_ FILE &ABS FILE &SOURCE FILE

measurement _system

sw_anly

&CMD_FILE

load &ABS FILE

setup default_path &SOURCE_FILE

setup trace_records 100

setup trace statements line 20 thru 100
run at_execution from transfer_address

execute

Where:
CMD_FILE is the emulation command file
ABS_FILE is the linked absolute file to be traced
SOURCE FILE is the source file to be debugged

The command file must contain the sequence of command lines required to create the setup from
the monitor level. Using the parameter passing feature of command files will allow the emul _cmd,
absolute, and source files required by the software analyzer to be specified in the command file.
An example is shown below:

9-3

High Level Software Analyzer
Configuring the Analyzer

The command file can be run from the system monitor level. To run the command file, type in the
file name and the file names for the emulation command file, absolute file, and source files to be

used.
<CMDFILE> STEP2 NT1 NT1 (RETURN)
If the file names are not entered, the prompts:
Define parameter &CMD_FILE:
Define parameter &ABS_FILE:
Define parameter &SOURCE_ FILE:

will appear on the command line.

Chapter 10

USING SUPPORT COMMANDS

INTRODUCTION

This chapter describes the software conventions used to make keyboard entries for operating the
software analyzer and how the analyzer directs the entries you make. Also described are the utility
softkeys, the utility keyboard keys, and the prompt softkeys.

SYSTEM SOFTWARE CONVENTIONS

This section contains information concerning the system software as it relates to any of the sub-
systems installed in a particular mainframe.

User Ildentification

The user identification (userid) command is the means of identifying yourself to the HP 64000 sys-
tem software as a unique individual who will be using the system for your own analysis/develop-
ment projects. Signing onto the system with your own userid immediately identifies which group
of files the system is to work with.

The userid syntax is a string of up to six (6) alphanumeric characters which start with an upper
case alpha character. If you select a userid with more than six characters, the system will recog-
nize only the first six. If you do not select a userid, the default condition is a blank userid. A blank
userid limits your ability to designate a file because if more than one file is given the same name,
and that file is called up, the system will recognize the first one it sees (which may or may not be
the one you want).

Directed Syntax

The system software causes a row of softkey labels to be displayed across the bottom line of the
CRT display. These softkey labels identify the functions to be obtained by pressing corresponding
keys in the row at the top of the keyboard. When you press one of the softkeys (selecting a pa-
rameter), the names of all the softkey labels change. The new softkey names offer selections that
can be made to complete the command entry.

By directing the syntax of your entries, syntactical errors are virtually eliminated. The softkey label
line always identifies appropriate entries to be made at any point during the process of formulating
a command. The software analyzer softkeys always prompt the user with a <R ETUR N> softkey
label when a valid command statement has been entered. If the softkey label line contains more
labels than the <R ETUR N> softkey prompt, then the command statement may either continue or
be terminated by pressing the key, as determined by the specific requirement of the
command being formulated.

10-1

High Level Software Analyzer
Using Support Commands

Entering Numeric Values

You can enter numbers into an analysis specification in any of the four standard number bases.
Place the applicable letter symbol (B, O or Q, D, H) at the end of your number to define its base.
Refer to the following examples:

1000B = 1000 binary

10000 or 1000Q = 1000 octal
1000H = 1000 hexadecimal
1000D or 1000 = 1000 decimal

Hexadecimal numbers beginning with a letter must be preceded with a numeric zero. For
example:

3FAH, OFFH, OF44H (but not F44H)

NOTE

Decimal is assumed if no base is specified when a number is entered.

Entering Module/Variable Names

You can enter module and variable names into an analysis specification exactly as it appears in the
source program with one exception. If the module or variable name is lower case and is identical
to a software analyzer keyword, it must be specified in quotes, e.g., "entry". Otherwise the
analyzer interprets the name as a keyword and generates an error message.

Command Files

A command file is a source file containing a sequence of commands as they would appear on the
command line if entered manually from the softkeys or keyboard. A command file is used to cre-
ate a particular measurement configuration programatically. A command file provides a self-
documenting record of a measurement setup and allows easy editing and modification. By using
the wait command described in this chapter, command files can be set up to perform some auto-
mated measurements which require no operator interaction.

A semicolon (;) is used in the command file to denote comments. The analyzer software will not
read any material following a ";" in any line of a command file. It will start loading new instructions
only after it finds the next carriage return.

In the example:

run from transfer_address; causes program execution to begin

only the command line text "run from transfer_address" will be acted on.

10-2

High Level Software Analyzer
Using Support Commands

Logging Commands

The HP 64000 Logic Development System has the capability to log commands to a command file.
This feature is especially useful for building command files that will carry out the entire measure-
ment setup automatically. To log commands for a measurement setup session from the system
monitor level software, press the log and to softkeys, type in the name of the file you want to use,
and press the key. From this point until you are once again back in the system monitor
software and press the log and off softkeys, and the key, all of the valid commands you
entered are logged into the log file. You may then conduct a software analysis session which will
build a command file for later use or for modification.

File Names

File names may consist of from one up to nine alphanumeric characters, starting with an upper
case letter. Underscores () are also permissible. Alpha characters, after the first character, may

be upper or lower case.

SOFTKEY UTILITY COMMANDS

The softkey utility commands available in the software analyzer are the execute, copy, show, end,
halt, and wait softkeys. These softkeys allow the user to execute a measurement, copy and dis-
play information concerning the current session, and to end the analysis session without losing the
current measurement specification. In addition they allow the user to halt a measurement in
progress or to disable commands while a measurement is in progress. The utility softkey com-
mands are described in detail below.

Execute Softkey

The execute softkey causes the analyzer to initiate a measurement based on the parameters
defined in the measurement setup specification. Pressing the execute softkey, then the
key causes the analyzer to search for and acquire data as specified in the trace setup specification.
While the measurement is in progress, the STATUS line will read "Executing, number of states =
n". When the specified number of trace records have been acquired, the STATUS line will read
"M68010: Running in monitor trace complete" followed by "formatting display” while the data is
being formatted for display. When formatting is completed, the measurement will appear on the
screen. Whenever the execute command is given, the last measurement file is deleted.

Copy Softkey

The copy softkey allows you to copy the current measurement setup parameters, the current
measurement, or the current display to a file that you name or to the system printer. The informa-
tion may also be appended to an existing listing file.

Show Softkey

The show softkey allows you to alternately select the current measurement data or the current
measurement setup for display on the screen. To view all the data available, use the (ROLL_UP),

10-3

High Level Software Analyzer
Using Support Commands

(ROLLDOWN), (NEXT PAGE), and keys, and the shifted left and right cursor keys
(SHEDE) and GHEDD)).

End Softkey

The end softkey is used for transportation from the present software level to the next higher level.
When you press the end softkey, the system will exit the software analyzer and return to the
measurement system level software. When you leave the analyzer by use of the end softkey, the
measurement configuration will be stored on the disc. Pressing the end softkey a second time
causes the software to enter the system monitor level of software. You can make use of the sys-
tem monitor level softkey functions without disturbing the measurement you ended from as long
as you do not press the opt_test softkey at the monitor level. If you pressed the end softkey only
once, the instrument is at the measurement system software level. From here you can reenter the
analysis module by pressing the sw_anly softkey and the key. If you pressed the end
softkey twice the instrument is at the system monitor software level. From here you can reenter
the analysis module by pressing the meas_sys and continue softkeys and the key.

NOTE

If you do not include the options continue statement in your command to
return from the system monitor level software, your present measurement
configuration will be purged. The measurement configuration is still
available in the default configuration file Sw_anly<HP-IB>:HP where
<HP-IB> is the HP-IB address of the HP 64000 station.

Halt Softkey

The halt softkey is used to halt execution of the current measurement. The halt function is ac-
complished by pressing the halt softkey, then the key. The halt command also executes
a break and puts the program into the monitor.

Wait Softkey

The wait measurement _complete command causes the software analyzer to disable all software
analyzer commands until the measurement is completed. When used in a command file, the wait
measurement_complete command suspends execution of the command file until the measurement
is completed. This enables the user to create command files that can execute repetitive measure-
ments, storing the measurement results between measurement executions. This command
provides the capability to automatically make measurements, unattended by the user, with the

results stored in listing files for future analysis.

KEYBOARD UTILITY KEYS

The following keyboard keys are used to help you to make entries in the software performance
analyzer command lines shown on the display.

10-4

High Level Software Analyzer
Using Support Commands

Recall Key

The key will cause the analysis module to return the preceding valid command line to the
screen. The analysis module has a command line memory which the key accesses. Each

time you press the key, the analyzer steps one execution further back into its memory of
command lines.

Tab Key
The key is used to move the cursor rapidly through the command line on screen. This key is
useful when you are making modifications to long specifications. By pressing (TAB), you step the

cursor from entry to entry forward through the specification on the command line. By pressing the
key and then the key, you step the cursor backwards through the specification.

Insert Char And Delete Char Keys

The (INSERT_CHAR) and (DELETE _CHAR} keys are used to edit the content of the command line. The
key will open a space before the present position of the cursor so that you can add
entries in the command line. The remainder of the line will automatically shift to the right with
each new entry that you make. The key function will remain in effect until it is
pressed again or until any other utility key is pressed (except (&), (=), or (CAPS _LOCK)). The
key is used to eliminate entries from the the command line without losing the entire
specification. When you press the key, the entry directly over the cursor will be
eliminated and the remainder of the specification will shift left. Holding the key down
will cause multiple character deletions as characters are shifted left, over the cursor position.

PROMPT SOFTKEYS

Any softkey name enclosed in angle-brackets "<>" is a prompt for the operator. If you press a
prompt softkey, the STATUS line of the display will explain the meaning of the prompt. The soft-
ware analyzer softkey label prompts and their corresponding status line prompt messages are
given in appendix B.

10-5

High Level Software Analyzer
Using Support Commands

NOTES

10-6

Chapter 11

SYMBOLS AND DATA TYPES

INTRODUCTION

This chapter describes the storage classes and data types that the software analyzer recognizes.
Symbols are categorized by whether the location of the symbol is known at link time (static) or
whether the location changes during run time (dynamic). The scalar and structured data types that
can be symbolically referenced by the software analyzer are described.

SYMBOL CLASSIFICATIONS
Static Symbols

LOCAL AND GLOBAL VARIABLES. Static variables (both local and global) are defined as those
whose base locations are allocated at link time. The software analyzer expects that these locations

will not change during run time.

PROGRAMS, MODULES, PROCEDURES, AND FUNCTIONS. A module is a set of program state-
ments that can be invoked (or referred to) by name. In Pascal, "module” may refer to the main
program of a file, or to individual procedures or functions within a program. In C, "module" can
refer only to functions. The key elements of a module, as required by the analyzer, are (1) the
module must be a contiguous segment of code with a single entry point and a single exit point,
and (2) all the code for the module must fall within the range of the entry and exit points. The
entry point is defined in terms of the assembly code which is generated after compilation of the
high level language module. It is the first executable instruction of the module (this includes any
compiler overhead which may have to be done before the assembly code performing the actual
module operations begins). The address of the entry instruction becomes the lower boundary of
the address range for the module. The exit point is defined as the last executable instruction of
the code segment and its address becomes the upper boundary of the address range for the
module.

In the commands setup trace data flow <MODULE> ..., and setup breakpoints <MODULE> ..,
the user can specify where a break should occur, either on entry to the module or upon exit from
the module. If neither entry nor exit are specified, the break is set upon both the entry and exit
points of the module. The command setup trace modules .. causes a break on both the entry and
exit points within the modules included in the measurement. In the command setup trace state-
ments <MODULE> .. , an address range is set up such that all statements within the module
cause a break to occur.

In the measurement commands setup breakpoints .., setup trace statements... and run ... from ..,
either a module name or a line number may be specified as the starting point. If a module name is
given, the measurement will begin at the entry point into the module (code including compiler
overhead). To avoid starting with the compiler overhead code, the first source code line number of

11-1

High Level Software Analyzer
Symbols and Data Types

the module may be given to identify the module itself instead of the module name. Then, the
asmb_sym file can be consulted to find the association between the line number and the assembly
code it relates to and the first instruction of the assembly code reflecting the actual module instruc-
tions will become the starting point for the measurement.

LABELS. The entry point into a module’s assembly code must have a label associated with it
which must be the module name (e.g. MAIN). The exit point must also have a label associated
with it which is identical in the first 14 characters to the entry point label except that an "R" is ap-
pended to the front of the label (e.g. RMAIN). It is these labels, found in the symbol files, that the
analyzer keys on to perform a table lookup of the address range associated with the module, as
well as its entry and exit points. The compilers follow these design rules but may, under certain
conditions, create identical labels. These conditions are as follows:

1. procedures and functions in Pascal which are on different levels (i.e. nested procedures)
may have identical names.

2. Due to the creation of the "R" or exit point labels, procedures and/or functions identical in
the f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>